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Abstract

Advanced image-based application systems such as image retrieval and visual question

answering depend heavily on semantic image region annotation. However, improvements

in image region annotation are limited because of our inability to understand how

humans, the end users, process these images and image regions. In this work, we

expand a framework for capturing image region annotations where interpreting an image

is influenced by the end user’s visual perception skills, conceptual knowledge, and

task-oriented goals. Human image understanding is reflected by individuals’ visual and

linguistic behaviors, but the meaningful computational integration and interpretation

of their multimodal representations (e.g. gaze, text) remain a challenge. Our work

explores the hypothesis that eye movements can help us understand experts’ perceptual

processes and that spoken language descriptions can reveal conceptual elements of image

inspection tasks. We propose that there exists a meaningful relation between gaze,

spoken narratives, and image content. Using unsupervised bitext alignment, we create

meaningful mappings between participants’ eye movements (which reveal key areas of

images) and spoken descriptions of those images. The resulting alignments are then

used to annotate image regions with concept labels. Our alignment accuracy exceeds

baseline alignments that are obtained using both simultaneous and a fixed-delay temporal

correspondence. Additionally, comparison of alignment accuracy between a method that

identifies clusters in the images based on eye movements and a method that identifies
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clusters using image features shows that the two approaches perform well on different

types of images and concept labels. This suggests that an image annotation framework

could integrate information from more than one technique to handle heterogeneous

images. The resulting alignments can be used to create a database of low-level image

features and high-level semantic annotations corresponding to perceptually important

image regions. We demonstrate the applicability of the proposed framework with two

datasets: one consisting of general-domain images and another with images from the

domain of medicine. This work is an important contribution toward the highly challenging

problem of fusing human-elicited multimodal data sources, a problem that will become

increasingly important as low-resource scenarios become more common.
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1

Introduction

Digital imaging has seen an exponential growth in the past decade with usage ranging from

personal photos and social media to more complex applications in education and medicine.

With advanced cameras, photographs (images) are not only used for capturing memory

or evidence, but for facilitating decision making as well. For example, doctors use medical

images to help diagnose and determine the treatment of diseases. Ideally, for computers

to be able to assist humans in their reasoning and decision making process, they need to

process these images as well as humans do. Intelligent computers should be capable of

making inferences about what people look at and what they say about what they look

at. Therefore, computers should be able to acquire and use learned associations. This is

known as semantic image annotation, and when performed on images to identify objects

or regions it is called semantic image region annotation. With this knowledge and learning,

computers would be able to provide useful and detailed information about an object. For

instance, when a user gazes at a painting in a museum, the computer can highlight areas

of the painting where an expert artist looked at and provide more conceptual information

about that area. This work integrates gaze and linguistic information indicating ‘what

people look at’ and ‘what they say’, to identify the objects and their corresponding names

or labels in images.

Automatic semantic image region annotation is the task of computationally identifying

image regions that are perceptually meaningful for humans and associating them with

appropriate natural language concept labels. It plays a key role in developing sophisticated

image-based information systems but it is a difficult and long-standing problem

[Smeulders et al., 2000, Zhang et al., 2012, Karpathy and Fei-Fei, 2015]. An example of

1
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Figure 1.1: Example illustrating the concept of image region annotation. The two-fold
process involves identifying and segmenting correct regions in an image and labeling them
correctly.

semantic image region annotation where regions in an image are well segmented and

labeled with corresponding appropriate words is shown in Figure 1.1. Although the entire

image in Figure 1.1 could be annotated as, for example mother playing with baby, it

is intuitive to annotate regions or objects such as woman and baby that constitute the

image. These detailed annotations for image regions can assist in important applications

such as image retrieval where the user could be searching for images of babies or visual

question-answering where the user could be asking what the baby is playing with. Further,

relations between annotated regions could also be inferred on their basis. High-level

cognitive processing and experience enable humans to process images at a semantic level

that remains difficult for a computer [Shanteau, 1992, Goldstone, 1998, Zhu et al., 2016,

Zitnick et al., 2016, Tavakoli et al., 2017]. This work proposes a novel framework to fuse

multimodal visual and linguistic data elicited from humans to achieve semantic annotations

of image regions. Gaze locations over an image can act as pointers and reveal perceptually

important regions and their relation to one another from the perspective of multiple

observers. Also, when humans communicate their understanding of and reasoning about
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Figure 1.2: Panels A and C show the eye fixation locations extracted from eye movements
and lexical concepts (labels) obtained from spoken narratives, respectively, over a common
time scale. This hypothetical example shows that the data collection session for this
image took T seconds. Panel B shows the seven image regions that were looked at by
the participant in the original image. The proposed algorithm will align words such as
baby and woman with corresponding regions, using the bitext alignment technique.
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images, spoken language is the most natural and convenient instrument of expression.

In this case co-captured image descriptions convey relevant meaning, particularly special

knowledge and experience that the human observers possess. An important novelty of this

work lies in the integration of human observers’ perceptual and conceptual knowledge

using natural language processing (NLP) methods to annotate images.

People often have the intuition that when they look at an object and mention its name,

they do so simultaneously. However, research in sentence production has shown that there

is a variable amount of time between when a person looks at an object and when they

name it aloud [Meyer et al., 1998, van der Meulen, 2003, Griffin, 2004]. Therefore, even

when visual and linguistic information is co-captured we cannot assume that a fixation on

a region will occur simultaneously with the verbal naming of the region. This lag, which

can vary in length, demands more sophisticated methods.

The bitext word alignment method [Brown et al., 1993], widely used in machine

translation, aligns the words of a sentence in one language with the word or

words in another language that are likely to be translations. For our problem, the

location of eye fixations on images are analyzed as visual units that encode visual

regions while the spoken descriptions about the images contain the linguistic units.

Prior work confirms the utility of associating words and sentences with images,

objects and image regions, and videos [Forsyth et al., 2009, Kuznetsova et al., 2013,

Kong et al., 2014, Socher et al., 2014, Thomason et al., 2014]. Many of these works rely on

written description of general-domain images, making the framework difficult to translate

to domain-specific images. This work, in contrast, focuses on building a framework that

can be applied to any image dataset. Perceptual and conceptual information is combined

via the integration of gaze and narratives to advance annotation of image regions.

This study aims to understand and encode important image information by

semantically annotating important regions of an image with natural language descriptors

as shown Figure 1.1. As shown in the Figure 1.2, the framework uses gaze locations on

images together with words uttered by observers to learn perceptually important image

regions and the corresponding linguistic descriptors. The study also asserts that the

combination of perceptual information (via eye movements) and more naturally obtained

conceptual information (via spoken narratives) contributes to the understanding of an

image.
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1.1 Contributions

The four main contributions of this work are as follows:

1. Show that human-elicited gaze and narratives jointly provide information that if

considered separately would be insufficient to understand how humans perform image

inspection and description tasks.

2. Exemplify the broad applicability of the visual-linguistic alignment framework by

comprehensively using and evaluating it with both domain-specific and scaled-up

general-domain image datasets.

3. Compare the performance of various image region segmentation techniques used

to identify the visual units for the two datasets to illustrate the strengths

and weaknesses both for the described framework and respective segmentation

techniques.

4. Provide the research community with a large multimodal dataset comprised of

co-captured gaze and spoken descriptions data collected during an image inspection

task involving general-domain images.

Chapter 2 discusses prior works in image region annotation as well as multimodal

data integration. Chapters 3 and 4 provide details about the collected multimodal data

and findings from preliminary analysis. This is followed by the discussion of the proposed

visual-linguistic alignment framework in Chapter 5. Results of the framework are discussed

in Chapter 6 followed by future work and conclusions in Chapter 7. Chapter 8 lists all

publications stemming from this work with some mathematical details about technical

concepts used in this work explained in the appendices.
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2

Previous Work

2.1 Challenges in image annotation

The goal of this work is to automatically annotate images through the integration of

end users’ perceptual and conceptual information with the information in the images.

Research efforts in automatic image annotation can be categorized into three types

of approaches [Zhang et al., 2012, Li et al., 2015]. The first approach involves manual

annotations by humans using text [Tamura and Yokoya, 1984, Chang and Hsu, 1992].

This approach is brittle since as the number of images increases, manual annotation

becomes impractical. The second approach annotates images using low-level features such

as color, shape, and texture to index images [Saber et al., 1996, Jain and Vailaya, 1996,

Sivic and Zisserman, 2003]. The third approach is more recent and attempts to bridge

the semantic gap. It involves understanding images and learning the semantic concept

models that can be used to label new images [Duygulu et al., 2002, Qu and Chai, 2008,

Ballerini et al., 2009, Karpathy and Fei-Fei, 2015, Johnson et al., 2015].

Treisman and Gelade (1980) were the first to introduce the concept of semantic

understanding of images. In their feature integration theory, they proposed that processing

of image information is a dynamic interaction between bottom-up and top-down directed

processes. The bottom-up process corresponds to the stimulus-driven discovery of low-level

image information pieces whereas the top-down process is the user-driven processing of the

discovered information pieces. The user-driven processing involves linking these disjoint

information pieces into perceptually meaningful image concepts and objects.

In spite of the proposed integration theory, for a long time image annotation

6
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algorithms were built solely on low-level features such as color and texture to

perform segmentation and retrieval [Saber et al., 1996, Shi and Malik, 2000]. Algorithms

employing these low-level features succeeded in capturing basic statistics of natural

scenes [Fei-Fei and Perona, 2005], identifying faces [Viola and Jones, 2004], or segmenting

single objects in a scene [Kumar et al., 2010, Jaber and Saber, 2010] but were unable

to deal with multiple objects in the scene, statistics of domain-related images, and

other high-level processing tasks. For example, while the bottom-up methods helped in

automatic detection and segmentation of objects in a scene, they did not provide the

relationship between these objects or the contextual meaning of the scene [Li et al., 2009].

Recent researchers have had some success with generating image descriptions and semantic

labeling [Kong et al., 2014, Karpathy and Fei-Fei, 2015, Yatskar et al., 2016]. However,

their techniques cannot be easily translated to complex domains such as medicine.

To bridge the semantic gap, Duygulu et al. (2002) proposed the use of machine

translation to combine image content with the accompanying text for object recognition

[Duygulu et al., 2002]. Following this, other researchers proposed several integrating

techniques using different mathematical approaches such as Bayesian methods, Latent

Dirichlet Allocation and Latent Semantic Analysis methods [Barnard et al., 2003,

Li and Wang, 2003, Berg et al., 2004b, Berg et al., 2004a]. Similarly, researchers proposed

the use of deep learning to combine text and images for image annotation

[Karpathy and Fei-Fei, 2015, Vinyals et al., 2014], as well as unsupervised alignment to

align text instructions with video segments [Naim et al., ]. In their recent work, Johnson

et al. (2015) suggested the use of neighboring test images and their annotations to

disambiguate and annotate otherwise ambiguous images. These approaches bridge the

semantic gap to a certain extent by bringing in multimodal information through images

and text. However they do not involve speech or gaze data and are only successful on

certain types of images failing to capture the semantics of images in complex domains.

Qu and Chai extended the idea of using multimodal data by using speech and eye

gaze that are more natural to elicit than traditional methods. However their application

scenario is a 3D simulated scene with no real-life challenges such as occlusion to deal with

[Qu and Chai, 2008].

All the above approaches are interesting and successful to some extent, for example

on scenic images and single object images, but they cannot be applied to complex

tasks requiring more than identifying simple objects. This is because they do not

incorporate the end users’ goal or experts’ knowledge during the modeling/learning
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stage. For crucial applications such as clinical decision making or pilot training these

methods are unreliable and demand approaches that incorporate more human intelligence

[Stark and Privitera, 1997, Scheirer et al., 2014]. The works of Scheirer et al. (2014)

emphasized that one needs to involve the human early on in the modeling process as

opposed to using the human performance solely for validation of machine performance.

In their work they used visual psychophysics to draw out information reflecting human

capacity which they call perceptual annotation and combine it with image features to build

a better face detector [Scheirer et al., 2014]. Motivated by the body of prior research, our

work proposes to fuse naturally obtained multimodal visual-linguistic data from experts

and build a semantic image region annotation framework over it.

2.2 Importance of capturing perceptual and conceptual

expertise

An integral component of this study is the use of eye movements and spoken narratives

to elicit human expertise or knowledge. Eye movements can be considered pointers to the

perceptually important regions of an image while spoken narratives can reveal conceptual

elements associated with those regions. Capturing perceptual and conceptual information

relevant to the image processing system’s end user’s goal is of paramount importance to

improve the annotation of images. Image-information systems must be reliable enough to

assist in goal-oriented performance [Müller et al., 2004]. End users may not merely seek

images or regions that have similar low-level features such as color or texture but they

may want to locate, classify, or segment an image based on high-level reasoning features.

Moreover, in domain-specific images, such as medical images, low-level features do not

sufficiently capture the subtle but key attributes that are crucial for decision making in

the visual domain of interest [Tang et al., 1999].

Studies have found that perceptual and conceptual expertise help a user formulate

more specific and comprehensive descriptions of images and these correlate with the

user’s ability to express their information needs [Goldstone, 1998, Vakkari, 2002]. Williams

and Elliott (1999) examined the effect of anxiety and perceptual skill on the visual

search strategy of karate experts while viewing taped karate offensive sequences. They

observed that karate experts showed an increased awareness and superior anticipation

under all levels of anxiety as opposed to novices [Williams and Elliott, 1999]. In another

study, researchers investigated the anticipatory skills of rugby players using a video-based
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test and observed faster responses and higher accuracy in highly skilled players

[Gabbett and Abernethy, 2013]. In the field of radiology as well, through expert-novice

comparison it is evident that novices tend to categorize objects first at the general

level whereas experts show a preference to identify objects at a more specific level

[Tanaka et al., 2005, Hoffman and Fiore, 2007]. Moreover, in their study with radiologists,

Hoffman and Fiore (2007) reported that experts can perceive certain aspects that are

literally invisible to the novice. Similarly, Krupinski (2000) showed that perceptual skills

exhibited by radiologists when searching medical images do not necessarily transfer to

a more general task such as “Where’s Waldo” where one has to search for a character

called Waldo among other similar looking characters. Therefore the same expert of one

field could be a novice in another area, implying that investigation into expertise-related

differences must be done in a domain or task-specific manner.

Researchers use various knowledge elicitation methods to capture human users’

expertise. One of the most common methods is interviewing and asking participants to

describe the decision making process through the think-aloud protocol. One problem

with this method is that it will only produce what an expert can verbalize as an

answer to the particular question [Shadbolt and Smart, 2015]. It also requires the expert

to perform a secondary task in parallel with the primary task. Any non-verbalizable

information is lost such as where these experts look in the image. Another widely used

technique is to ask the experts to manually mark important regions in images, etc.,

[Shyu et al., 1999, Wang et al., 2012b]. The drawback with this technique is the loss of

any information pertaining to how the expert arrived at that decision, i.e. information in

the image that the expert used to decide where to mark. This work uses eye movements

and spoken language as they are non-invasive and more natural tools that enable us to

draw out the tacit perceptual and conceptual information of humans.

2.3 Need to integrate eye movements and spoken narratives

This work emphasizes a multimodal approach to achieve image region annotation in

order to improve our understanding of images. Psychologists have previously used eye

movements to find answers to various perceptually-related image understanding queries.

Researchers have found a strong connection between visual attention strategies and

cognitively driven perception [Oliva et al., 2003, Borji, 2009]. Although the inherent

low-level structure (such as bright color or high-contrast edges) of images drive the
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initial stages of visual attention, meaningful content of the image soon comes into

play [Stark and Privitera, 1997]. As a result eye movement behavior can differ with the

change in task even if the stimuli remain the same [Yarbus, 1965, Yarbus et al., 1967].

Recent studies suggest that top-down processes influence visual perception more than

bottom-up processes in real tasks [Castelhano et al., 2009]. Although eye movements

cannot completely reveal complex cognitive processes, empirical studies have established

relationships between visual perception and recognition. Walther et al. (2005) used visual

attention to learn to recognize objects in cluttered indoor and outdoor scenes. Likewise,

Mishra et al. (2009) used eye movements to aid their segmentation algorithm. Eye

movements have also been used to annotate video frames of paper printing and stapling

tasks [Yu and Ballard, 2004a].

Analogously, researchers in psycholinguistics have used language to understand certain

aspects of human psychology. Natural language is a fundamental knowledge representation

system, and spoken narratives can indicate viewers’ focus of attention [Ji and Ploux, 2003].

Researchers have previously used verbal narratives to investigate the process of

language production in simple day-to-day tasks and storytelling [Meyer et al., 1998,

Holsanova, 2006]. Language is also used by researchers in computer vision to caption

images and video frames [Karpathy and Fei-Fei, 2015, Naim et al., , Naim et al., ].

Through simultaneous multimodal gaze-verbal capture higher-level conceptual knowledge

of the expert can be added to the eye movements for analysis.

Empirical experiments have shown that eye movements are closely time-locked with

human language processing [Just and Carpenter, 1976, Ferreira and Tanenhaus, 2007,

Griffin, 2004]. Linguists, for instance scholars active in psycholinguistics, have used eye

movements as a tool to understand language. Similarly, eye movement researchers have

incorporated linguistic input into their studies. Just and Carpenter (1980) described how

measures like fixation duration changed depending on the linguistic characteristics of the

text being read. Soon Frazier and Rayner (1982) pioneered the use of eye movements

to understand written language and syntactic processing. During the following two

decades numerous contributions were made by researchers who used eye movements as

a tool to reveal the way written language is processed [Heller, 1988, Pollatsek et al., 1993,

Rayner, 1998].

Some researchers took an interest in investigating language comprehension through

the use of eye movements [Tanenhaus et al., 1995, Dahan et al., 2001, Spivey et al., 2002,

Richardson and Dale, 2005]. They revealed that it was possible to investigate how
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people understand spoken language by measuring people’s eye movements while listening

to verbal commands and executing them. Richardson and Dale (2005) conducted a

study to understand the coupling between speakers and listeners, reporting that the

interlocutors’ eye movements were closely time-locked. Another study showed that eye

movements can be used to understand the stages of language comprehension such as

hearing a command, interpreting it, and engaging in resolving and executing commands

[Kaiser and Trueswell, 2008]. Such prior works revealed that a relation between cognition,

vision, and language exists and that by integrating eye movements and spoken narratives,

an understanding of cognitively complex tasks can be obtained.

Inspired by language comprehension studies, Cooper (1974) used eye movements to

investigate language production. He observed that participants’ fixations were generated

before the end of words they used in narration. Similarly, Meyer et al. (1998) investigated

sentence generation and fixation duration during simple noun phrases and found that

people fixated the next object only after lexically encoding, but before executing the prior

word. Authors also observed that mean viewing time for speakers was significantly longer

for objects with low frequency names (names that were not used very often) than with

high frequency names (names used very often). This is particularly interesting because

our work focuses on modeling the visual-linguistic relation and prior research has revealed

that factors such as frequency of a name can play an important role. In another study,

van der Meulen (2003) observed that participants fixated the objects to be named in the

order of mention and once just before naming. This indicates that speech is performed in

an incremental fashion, i.e. speakers tend to look at the objects they are about to find

words for in the same order in which the object names were mentioned in the utterance.

The growing interest in this multimodal field motivated Griffin and Bock (2000)

to study the temporal relation between event apprehension, sentence formulation, and

speech execution. They compared the timing and trajectories of selective fixations to

agents (objects performing the action) and patients (objects undergoing the action)

across different tasks and found that speakers’ eye movements were guided by an overall

understanding of the event/scene rather than by the salience of the individual objects

in it. The distribution of fixation times anticipated the order of mention regardless of

sentence structure, partly confirming van der Meulen’s findings. They also found that

when speaking extemporaneously, speakers began fixating elements less than a second

before naming them, suggesting that people spend some time looking at objects prior to

naming them [Griffin and Bock, 2000, Griffin, 2004]. Recently, a study was conducted to
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understand how complex noun phrases are produced and if the production process was

similar to that of simple noun phrases [Shao et al., 2013].

The above findings indicate that vision and language are tightly integrated. In

1964, Kirsch published a paper that attempted to combine the two cognitive modalities

to understand semantic processing. His work combined lexical and visual data from

newspaper photographs and briefly laid the ground for studying the two together.

Although there were other researchers who performed studies along the same lines

[Badler, 1975, Waltz, 1980, Herzog and Wazinski, 1994], the focus shifted away from

understanding the interactions of the two modalities until 1995 when Srihari investigated

the correspondence problem and visual semantics [Srihari, 1995]. In the following years

there was an increased interest in developing methods to integrate language and vision and

understand how human cognition works, including a proposed technique to integrate the

two modalities using the mutual information model [Roy, 2000, Roy and Pentland, 2002].

Several researchers investigated the multimodal integration problem in relation to sentence

prediction and object naming in scenic images [Coco and Keller, 2012, Clarke et al., 2013,

Yun et al., 2013a, Yun et al., 2013b]. While these works were successful in infant-directed

interactions or on scenic images it is not clear that they would translate successfully to

complex scenarios such as clinical decision making.

Although there is some relationship between the timing of eye movements and spoken

narratives, an exact or fixed-delay temporal match indicating that a fixation on a region

will occur simultaneously or after a fixed time interval with the verbal naming of the

region cannot be assumed. Holsanova (2006) studied the interaction of vision and language

over time by investigating the dynamics of picture viewing and picture description. Her

research revealed that correspondence between the spoken words and the objects in the

scene could be of different types, e.g. one-to-one or many-to-one [Holsanova, 2008]. These

findings partly confirm hypotheses such as the existence of a temporal relationship between

when objects are gazed upon and when their names are uttered but lack any quantitative

validity or technical modeling that could be used in automated systems. An important

concern that arises from prior research is how feasible it is to use temporal correlation to

model the temporal relation between eye movements and language given that there are

various factors that affect this relation. Therefore, we need to employ other techniques

such as bitext alignment, which is widely used in machine translation to align words in

one language to their corresponding translations in another language.

Duygulu et al. investigated a method to automatically recognize and annotate objects
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in scenes [Duygulu et al., 2002]. They segmented images into regions and clustered them

into region types that they referred to as blobs. Further, expectation-maximization was

used to learn the mapping between the blobs and the keywords for a given image.

However, the image regions or blobs and keywords were obtained using image segmentation

methods and a large vocabulary from captions without any human-elicited eye movements

and spoken narratives. A similar technique was used by other scholars to automatically

match words to the corresponding pictures [Barnard et al., 2003], faces in pictures to

names [Berg et al., 2004a, Berg et al., 2004b], and natural language instructions to video

frames for a particular task [Naim et al., ]. Jamieson et al. (2006) addressed the problem

of grouping image features, namely SIFT (scale-invariant feature transform) features,

by associating them with the names of objects appearing in cluttered scenes obtained

through captioning. Qu and Chai (2008) proposed that a modified IBM translation

model II [Brown et al., 1993] together with perceptual information and observer’s domain

semantic information expressed using spoken language could be helpful in interpreting

unexpected user language inputs in conversational systems. They applied this idea to

computer-generated videos involving 3D objects in a room scene where the participants

were asked various questions about the decoration of the 3D simulated room. Their work

provides an interesting factor of including domain knowledge into the translation model.

However, the use of a 3D simulated room scene with objects simplifies many challenges

faced when dealing with complex real-life scenarios.

Yu and Ballard (2004a) appear to be the first to have a pioneering paper in exploring

how word alignment methods could be extended to a challenging task of grounding

spoken language in sensory perceptions. Similar to our work, they transcribed the

audio and extracted nouns as object names [Yu and Ballard, 2004b]. For the perceptual

representation of objects, Yu and Ballard segmented the objects in the video using gaze

data. Further, these objects were represented using multidimensional color and shape

features. The multimodal data consisting of words and objects was then integrated

using IBM Model 2, a non-HMM based word alignment method commonly used in

machine translation, to learn correspondences. In their extended work, they combined

scene video, participant’s gaze, head motion, and object names obtained from verbal

narratives while performing everyday tasks such as stapling printed papers, to annotate

objects and categorize action scenes in video [Yu and Ballard, 2004a]. Their work

provides a good understanding of how multimodal data can be combined for a video

annotation task. However, their work involves only nine [Yu and Ballard, 2004b] and
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six [Yu and Ballard, 2004a] participants and three trivial video stimuli. Primarily, Yu

and Ballard explored object annotation with images that had uniform background and

consisted of distinct objects that were trivial to segment. It is also unclear whether their

work could be easily generalized or extended to other domains such as medical image

inspection. Lastly, Yu and Ballard’s work does not provide a clearer evaluation and baseline

comparison. Motivated by their work, we investigate multimodal image region annotation

with images that do not have uniform background and consist of image regions including

skin lesions that are difficult to segment. We explore the annotation task using two larger

datasets consisting of images from general-domain and specific-domain, respectively, as

well as provide baseline comparison.

2.4 Summary

To summarize, it is evident that image-based annotation systems would only benefit

from incorporating the end user during the design process. A framework that fuses

multimodal information, obtained from the humans in more natural ways, can contribute

to a higher-level understanding and modeling of both simple and complex images.
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Eye Tracking and Spoken

Description

This chapter begins by briefly describing the components of the experimental design in

section 3.1. Four IRB-approved eye tracking studies were conducted as part of this work.

Sections 3.2, 3.3, and 3.4 describe three of the eye tracking studies conducted with a larger

research team, with the detailed description of the fourth study, specific to this work, in

Chapter 4. Section 3.5 provides insight into the data quality and Section 3.6 discusses

some preliminary results obtained using the collected data.

3.1 Components of the experimental design

In this section we briefly introduce eye tracking, spoken description, our approach to elicit

natural data from participants.

3.1.1 Eye tracking

Visual perception is an active dynamic process in which the viewer seeks

out specific information to support ongoing cognitive and behavioral activity

[Malcolm and Henderson, 2010]. Visual perception can be divided into two main phases,

low-level vision and high-level vision. Low-level vision incorporates gathering of visual

information from the outside world, such as extracting object boundaries or color, which is

then transmitted to the visual cortex for further processing. High-level vision is concerned

with problems such as object recognition and classification that involves appropriate

15
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interpretation of the information obtained from low-level vision [Ullman, 2000]. Both

these phases are intertwined temporally in cognitive processes and are crucial components

of perceptual skill. Humans integrate the low-level information gathered through their

vision system (e.g. eye movements) with high-level knowledge in their mind to perform

the reasoning process. By tracking human experts’ eye movements we can investigate

where they focus their attention over time and what perceptual strategies they employ

during image inspection. Therefore, eye movements of humans can be used to extract

useful information about complex cognitive processes.

The eye moves frequently, shifting the gaze to subsequently foveate different portions

of the world. There are two key concepts in eye movements that will be referred to

frequently in this work: (1) saccade - a type of eye movement, and (2) fixation - a state

of the eye when gaze is relatively stable. Fixations occur when a stationary observer is

viewing a static object. Other types of eye movements include smooth pursuit, vergence,

and vestibulo-ocular eye movements. Smooth pursuit movements occur when a stationary

observer smoothly pursues a moving object [Leigh and Zee, 2015]. Leigh and Zee describe

vergence movements as the movements that allow rotation of the two eyes simultaneously

in the same or opposite directions so that gaze can be shifted between different depth

planes. Vestibulo-ocular movements are reflex movements that come into play when the

observer is in motion [Leigh and Zee, 2015]. When an observer fixates at an object and

moves their head the eyes rotate in the opposite direction of the head to compensate for

the head movement. Since our data collection process involves stationary observers viewing

static images, we focus on fixations and saccades.

1. Saccade: A saccade is a ballistic eye movement that observers make to shift their

point of regard. On average a person makes about 150,000 saccades a day and can

execute about 2-4 saccades per second [Phillips and Edelman, 2008]. Although we

move our eyes frequently, we do not consciously perceive the image motion resulting

from saccades.

2. Fixation: The saccades are separated by fixations, periods of retinal image stability

when we obtain high resolution information about the visual environment. The

duration of a fixation depends on participants’ interest in the visual region but

typically ranges from 200 to 400 ms and can vary with the underlying task

[Pelz and Canosa, 2001, Lipps and Pelz, 2004].

There are various techniques used to track a person’s eyes. In this work, we use remote
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eye trackers to collect eye movement data. Remote eye trackers are typically placed more

than 50 cm from the participant, and hence, are not invasive. The majority of trackers use

infrared to illuminate the eyes and can be binocular or monocular. Depending on where

the infrared illuminator is placed with respect to the image capturing camera, eye trackers

can be categorized as bright pupil or dark pupil. More information about various types of

eye trackers can be found in Duchowski’s recent textbook [Duchowski, 2017].

A calibration procedure is usually required in eye tracking to collect enough information

about the participant’s eye to accurately predict the gaze point and to account for the

individuality of the participant. It is the process through which the eye tracker measures

characteristics such as shape of the participant’s eyes and the relative position of the fovea.

During calibration a participant is required to look at some known points within the scene

while certain eye features are captured (depending on the eye tracking technique) for

each point. Some researchers include a validation procedure after calibration to determine

the participant’s calibration accuracy and if the validation indicates (using a machine or

manually defined threshold) unacceptable accuracy, the calibration procedure is repeated.

3.1.2 Spoken descriptions

Conceptual knowledge of a human is not directly observable but capturing observers’

spoken descriptions of images during image inspection can give insight into their conceptual

reasoning process. Transcribed spoken narratives can be analyzed at various levels

depending on the goal of the analysis. Narratives can be segmented into paragraphs,

utterances, word tokens, morphemes, and other units of analysis. In this work we record

verbal data and transcribe them.

3.1.3 Master-Apprentice approach

Participants may not be aware of the steps they may take while describing images, so they

are often unable to explain their steps explicitly [Beyer and Holtzblatt, 1997]. Therefore,

the experiment is designed carefully in order to draw out these complex cognitive processes

in a natural and efficient way. According to Beyer and Holtzblatt, teaching in the context

of work provides an efficient way to bring out the participants’ tacit knowledge. This is

known as the Master-Apprentice (MA) model. We used an MA model in all data collection

setups to draw out the details that participants might miss during a regular widely used

think-aloud process. The MA model also avoids the secondary-task problem inherent in
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Figure 3.1: Master-Apprentice approach: Here the domain expert (right) is the Master
sitting in front of the eye-tracker which is located underneath the computer screen
displaying the images. In this case, a Physician Assistant student (left) is the Apprentice
who does not talk during the experiment.

the traditional think-aloud paradigm because ‘teaching’ in this context feels more natural

than ‘thinking out loud,’ a task that observers often need to be reminded to continue.

3.2 Gaze-verbal data collection for experts (DERM I)

We eye-tracked 16 participants, including 12 board-certified experienced dermatologists

(‘attendings’) and four dermatologists in-training (‘residents’). An illustration of the

experimental setup is shown in Figure 3.1. In this study all participants were recruited

from the Rochester area. Apart from the 16 participants we also had Physician Assistant

students who served as the Apprentices in order to motivate the dermatologists in the

Master-Apprentice approach (Figure 3.1). A set of 50 dermatological images (provided

by Logical Images Inc, Rochester, NY and Dr. Cara F. Calvelli, M.D.) was selected for

the study, with each image representing a different diagnosis. These image cases vary

in complexity in terms of both dermatological knowledge and clinical attributes. We

presented each image to the participants on a 22-inch LCD monitor (1680× 1050 pixels)

approximately 70cm from the participant. The full display subtended approximately 38×22

degrees of visual angle at that distance, though most images did not fill the field. The

aspect ratio of the images varied, but on average, the images subtended approximately
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32 × 22 degrees on the display. We used SensoMotoric Instruments (SMI) RED remote

eye-tracker attached to the above display, as shown in Figure 3.1, and running at 50Hz to

collect gaze data. The reported accuracy of the RED eye-tracker is 0.5 degree. It monitors

the position of a participant’s point of regard on the image in a non-intrusive way. We use

a double computer set-up wherein one of the computers was used to present the image

and the other ran the software iViewX gaze tracking system and Experiment Center 2.3.

The dermatologists were instructed to “examine and describe each image verbally as if

teaching the trainee sitting next to you to make a diagnosis based on the image.” A nine

point calibration followed by a four point validation was conducted after every 10 images

with a re-calibration done, if necessary. In addition, we recorded verbal narratives using

an Olympus VN-6000 Digital Voice handheld recorder. It was small and convenient but

not high quality. This dataset is referred to as derm i dataset in this thesis.

3.3 Gaze data collection for novices (NOV)

The second experiment included 15 undergraduate students with no medical training

recruited from Rochester Institute of Technology. Eight of the images from the original

derm i dataset were judged to be too disturbing for a non-medical audience, and were

removed, leaving a subset of 42 images for the second study. The eye-tracker set-up and

calibration routine were identical to that used in the collection of the derm i dataset. In

order to replicate as closely as possible the conditions of the physician group in the derm i

dataset, the undergraduates in the novice group were instructed to “examine and describe

each image as if you are describing it over the phone to a dermatologist who cannot see

the image but has to diagnose it.” No verbal data were collected in this experiment. This

dataset is referred to as the nov dataset in this thesis indicating it involves novices with

respect to dermatology.

3.4 Gaze-verbal data collection for experts (DERM II)

In this study, we eye tracked 9 attending dermatologists and 18 dermatology residents

inspecting 30 dermatological images. The images were selected such that they span about

three to four primary lesion types with each type consisting of equal number of images

as others. Participants were instructed to examine and describe each image aloud to

an imaginary trainee. In addition to other descriptions, they were asked to provide a
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Table 3.1: Sample raw data as obtained from SMI eye tracker showing from left to right:
system timestamp, left-eye horizontal and vertical fixation locations, right-eye horizontal
and vertical locations, left-eye and right-eye event, respectively.

Time Lx[px] Ly[px] Rx[px] Ry[px] L Event R Event

7456470899 919.19 504.03 919.19 504.03 Fixation Fixation

differential diagnosis, a final diagnosis as well the certainty of their final diagnosis expressed

as a percentage, while their eye movements and verbal narratives were being recorded. For

the calibration routine, we performed a validation after every 5 images and re-calibration

was performed only if the participants’ validation error was more than one degree. The

50Hz SMI remote eye-tracker was replaced with a 250Hz SMI remote eye-tracker. The

250Hz tracker results in higher number of samples and also uses a velocity-based saccade

detection algorithm to find saccades more accurately as compared to the dispersion-based

algorithm used in the 50Hz. A blank gray slide and a test slide with a small, visible target

with an invisible trigger area of interest were inserted between every two stimuli. Using a

gray slide ensured that the gaze on one image did not influence the gaze on the following

image. The test slide helped us measure (post-experiment) the drift in eye movement

accuracy that takes place over time. Measuring the distance between the participants’

fixation at the center target and the actual location of the center target provided us with

information regarding drifting (due to participants’ movement) that may have occurred.

We used a TASCAM DR-100MKII audio recorder with a lapel microphone to collect the

audio recordings as opposed to the recorder used in derm i data collection. The rest of

the eye-tracking set-up was similar to derm i data collection. This dataset is referred to

as derm ii dataset in this thesis and is used in the visual-linguistic alignment framework.

3.5 Fixations, narratives, and data quality

Fixations: The collected raw gaze data is processed using the SMI software package

BeGaze 3.1.117 to detect fixations and saccades. The fixations are reported as x, y pixel

coordinates of the image indicating where the observer gazed at. Table 3.1 shows an

example of the output from the BeGaze software. Figure 3.2 (right) shows an observer’s eye

movements overlaid on the image with the red circles representing the fixation locations.
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Figure 3.2: Example of multimodal data. On the left is the transcription of the spoken
description. On the right is the eye movement data overlaid on the image. The radius of
the red circles represent the amount of time spent fixating that location and the red lines
represent change of fixation location i.e. a saccade.

Narratives: We manually transcribed and time-aligned the spoken description

recordings at the word level for both the derm i and derm ii datasets using Praat, a

software package for speech analysis [Boersma, 2002]. An example of transcribed verbal

description from the derm ii dataset is shown in Figure 3.2 (left). As mentioned earlier

no verbal data was collected for the nov dataset.

Data quality: Since the accuracy of eye trackers is not exactly as stated by the

manufacturer [Wang et al., 2012a], we analyzed the sets of collected eye movement data

for calibration errors. For each study, we calculate the mean calibration accuracy in the

horizontal and vertical direction for every participant by averaging over the participants’

calibration data. Following this the overall mean and the standard deviation across all the

participants is calculated for the two directions respectively. Participants whose means in

both directions were within two standard deviations of the overall mean in that direction

were included in further analysis. Using the calibration method for data quality, we selected

75%, 100%, and 86% participants of the total in derm i, nov, and derm ii dataset,

respectively. Some participants and images were not considered for further analysis for

reasons such as unacceptable calibration accuracy, accidental loss of eye movement or

verbal data, and too much noise. The overall mean and standard deviation in the two

directions for the three dataset after removing participants with poor calibration along

with final number of images used is shown in Table 3.2.

We performed first-order descriptive analysis of the gaze and spoken description data

for the derm ii dataset. Average fixation duration across the 26 observers was 320

milliseconds and average duration of narratives was about one minute. The manually
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Table 3.2: Mean calibration accuracy after participants with poor calibration were removed
for the three datasets (all values are in degrees) The last two columns of this table show
the number of participants and images used in further data analysis.

Dataset X Mean X SD Y Mean Y SD Participants Images

derm i 0.51 0.13 0.51 0.09 12 (75%) 50
nov 0.63 0.29 0.70 0.14 12 (100%) 34

derm ii 0.71 0.16 0.81 0.23 26 (86%) 29

Table 3.3: Mean, standard deviation, minimum, and maximum number of word tokens,
word types, and type-token-ratio across the 754 narratives (26 observers, 29 images) for
the derm ii dataset. The high value of mean type-token ratio with a low value of standard
deviation suggests high lexical diversity.

Mean SD Min. Max.

No. of Tokens 80 39 16 264
No. of Types 56 21 14 128

Type-Token Ratio 0.74 0.09 0.48 1

transcribed narratives were segmented into word tokens using the default NLTK word

tokenizer. Various measures for the first-order analysis of the narratives were then

calculated. Table 3.3 shows the mean number of word tokens, word types, and type-token

ratio along with the standard deviation, minimum and maximum number of tokens and

types. The mean number of tokens and the average duration of narratives together indicate

that on average observers uttered 1.3 words per second, which indicates that the experts

did not rush through the image inspection and description task. The mean type-token ratio

of 74% suggests that there is significant lexical diversity across the dataset highlighting

the richness of the dataset. Figure 3.3 shows a scatter plot for the mean number of word

types against the mean number of word tokens for the 29 images. As expected, the plot

is linear since higher number of tokens typically result in higher number of types. Images

10, 5, and 16, highlighted in green, have fewer mean word tokens and types than images

6, 23, and 17, highlighted in magenta. This is possibly because images 10, 5, and 16 have

only one primary morphology with some associated secondary morphology whereas images

6, 23, and 17 have more than one primary morphology with their respective secondary

morphologies. For example image number 10 has multiple plaques whereas image number 6

has nodule, papules, erythema thereby increasing the likelihood of higher mean type-token



www.manaraa.com

3. EYE TRACKING AND SPOKEN DESCRIPTION 23

Figure 3.3: Scatter plot showing mean word types vs. mean word tokens for each image
across all observers in the derm ii dataset. Each image is a data point. Highlighted images
are shown at the bottom (green) and on the right (magenta).

ratio. Additionally, the experts were instructed to describe as if they would diagnose which

could have also contributed to the high values of mean type-token ratio. Figure 3.4 shows

the mean number of word tokens, word types, and type-token ratio for each observer

across all the images. The high values of type-token ratio suggest lexical richness and

heterogeneity present in the descriptions provided by the observers.

3.6 Other studies with DERM I, II, and NOV

Before embarking on multimodal alignment, the derm i and nov dataset were thoroughly

explored.

The verbal data from the derm i dataset led to some interesting work about

uncertainty in physicians’ narrative and the diagnostic correctness [McCoy et al., 2012b],

understanding medical experts’ reasoning processes [McCoy et al., 2012a], investigating

disfluencies in descriptions as indicators of context dependency and cognitive reasoning

[Womack et al., 2012], and explore units of thoughts in spoken medical narratives

[Womack et al., 2013]. The gaze data from the derm i and nov datasets were used to

model eye movement patterns of medical experts and novices during image inspection tasks
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Figure 3.4: Bar plot showing the mean number of word tokens, word types, and type-token
ratio (TTR) for each observer across the 29 images in the derm ii dataset. All the observers
have a mean type-token ratio greater than 0.6 suggesting stronger lexical diversity.

and explore the differences [Li et al., 2012, Li et al., 2013, Li et al., 2016]. In addition, Guo

et al. (2014a) used the gaze and verbal data to design a human-centered image retrieval

application [Guo et al., 2014a]. Guo et al. (2014b) also studied the narrative data. The

verbal data from the derm ii dataset was also used to shed light on physician decision

making [Hochberg et al., 2014a] as well as automate the process of annotation of those

styles [Hochberg et al., 2014b]. Bullard et al. (2014) used the derm ii dataset to model

physicians’ diagnostic confidence and self-awareness.

In the following subsections we discuss preliminary work performed using the two

datasets that motivated the alignment-annotation framework. We first introduce some

technical concepts that are helpful to understand the preliminary work and related

findings.

3.6.1 Technical concepts

Fixation, Union and Intersection Maps: Fixation maps as defined in this work are

3D grayscale maps where two of the dimensions denote the x, y location of a fixation

and a foveal region around it and the third dimension represents the duration of the
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fixation and the surrounding region. Using BeGaze 3.1.117 software from the SMI package

[Sensomotoric Instruments, 2016], x, y locations of fixations on the stimuli and their

corresponding durations are obtained. These x, y locations indicate where on the stimuli

the participant gazed at a point in time. To visualize this, a value of 1 is assigned to x, y

pixel coordinates that were fixated and 0 to the rest of the image coordinates resulting in

a binary fixation plot ; see Figure 3.5(b). Since the fovea is not a single pixel but subtends

a larger area, a simple binary plot would not be appropriate to represent the region over

which visual information is acquired during the fixation. Therefore, to approximate the

fovea, a 2D Gaussian kernel of size σhorizontal = 2, σvertical = 3 degrees is convolved

with the binary plot to yield a grayscale map representing regions of visual information

[Wooding, 2002]. The intensity of the darkness of the regions are further weighted by

the individual fixation durations and finally normalized by dividing each value by the

maximum to range from 0 to 1. The resulting continuous heatmap overlaid on the original

image as shown in Figure 3.5(c) is called the fixation map. The standard deviations in

the two directions for the kernel are not the same because, generally in eye tracking, a

participant’s eyes tend to drift more in the vertical direction. Union maps are generated

by adding every participant’s fixations maps and normalizing, per image. These union

maps illustrate pixels fixated by one or more participants. Likewise intersection maps are

generated by taking the area in the union map shared by at least 80% of the participants.

Most of the results discussed in the following sections were obtained using binary fixation

maps unless stated otherwise.

Area Under the Curve (AUC): Receiver operating curves (ROC) can be used as

a metric to evaluate how well one participant’s fixations match another participant or a

group of participants [Green and Swets, 1966]. In this method the fixation map of any

participant or a group of participants is treated as a binary classifier on every pixel in

the image. The fixations of the participant or group to be compared are used as ground

truth. By varying the threshold, the ROC curve is drawn as the false positive rate vs.

true positive rate and the area under this curve (AUC) indicates how well the fixation

map ranks a ground truth fixation with values ranging from 0.5 (chance performance) to

1 (ideal performance).

CIELAB: CIELAB color space is an appropriate color space representation for

dermatology images, due to the relation of the L and b components to melanin and of

the a component to hemoglobin [Takiwaki, 1998]. In this color space the red, green, and

blue color channels from the original RGB image are transformed to three channels: a
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Figure 3.5: Panel (a) the original image showing melanoma on foot; Panel (b) participant’s
fixations (blue) overlaid on the image: the blue locations are assigned 1 and others 0
creating a binary map; Panel (c) the participant’s fixations from Panel (b) convolved with
a Gaussian to obtain a heatmap overlaid on the original image.

luminance channel L, a red-green opponent channel a, and a yellow-blue opponent channel

b. Lab space has been widely accepted and shown to be effective for differentiating between

lesioned and normal skin [Shin et al., 2002, Bosman et al., 2010].

Scale Invariant Feature Transform (SIFT): The SIFT algorithm extracts

distinctive features in an image or video that are invariant to image scale and rotation

[Lowe, 1999]. The image data is transformed into scale-invariant coordinates with respect

to local features. Firstly, interest points that are invariant to scale and orientation are

identified. In the next step, interest points are tested for stability and keypoints are selected

based on the measures of their stability. Each keypoint is then assigned with one or more

orientations based on the local image gradient directions. Finally, local image gradients

around each keypoint are transformed into a set of descriptors that are invariant to shape

distortion and range of illumination.

3.6.2 Importance of eliciting perceptual behavior of experts

To demonstrate why perceptual behavior would be useful, a comparison between

dermatology experts and undergraduate novices using different metrics was conducted.

For the nov dataset, out of 42 images, 34 images had good eye movement data fit for

further analysis. Therefore, eye movement data for the same 34 images were selected for
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Figure 3.6: Box plots for median fixation duration and saccade amplitude for the experts
and novices. Notice that experts tend to have longer fixation durations and saccade
amplitudes compared to novices.

the derm i dataset so that the analysis is performed on the same set of images. Both

groups respectively comprised data for 12 participants.

For the experts and novices, the median fixation duration and saccade amplitude

over all images and all participants were calculated separately. Figure 3.6 shows that

for the novice group these two metrics were lower than for the expert group. On each box,

the central mark is the median, the edges of the box are the 25th and 75th percentiles.

The whiskers extend to the most extreme datapoints that are not considered as outliers.

The outliers are plotted individually. A two-tailed Student’s t-test indicated that these

differences were significant (p < 0.05).

While these measures indicate a difference between the two groups they are not

strong enough to rule out the null hypothesis that the two groups are not different. Also,

more than one type of comparison metric is required to compare different aspects of eye

movement behavior [Riche et al., 2013]. For this purpose two other measures were used

namely ideal area under the curve (iAUC) and recurrence quantification analysis (RQA).

They are discussed below.

The ideal area under the curve (iAUC) measures the variability among participants.

It is computed by measuring how well the fixations of one participant can be predicted by

the fixations of the other n-1 participants, iterating over all n participants and averaging

the results for all the participants and images [Borji, 2009]. For example, if we assume

that all participants have the exact same eye movement behavior then every participant

will be a perfect match to every other participant and the iAUC will be 1. The concept
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Figure 3.7: Histogram of ideal Area under the Curve (iAUC) values averaged over 34
images.

of iAUC was used in the following way to investigate the existence of differences between

dermatology experts group (derm i) and undergraduate novices group (nov). Taking one

group at a time, for a given image:

1. A grayscale Gaussian fixation map for a participant is generated at a time using the

method described above. This is the Test Eye Map.

2. Next, the x-y fixation coordinates of the remaining n-1 participants in the same

expertise group are accumulated and a binary map is generated by assigning 1 to

the locations specified by the accumulated x-y coordinates and 0 to the rest of the

pixels. This is referred to as the Ground Truth Eye Map.

3. With the above two maps the AUC is calculated in the traditional way as described

above for the participant. This is done for all the participants and an average over

all the participants is calculated.

4. This is done for all the images in the dataset and the average across images is

calculated resulting in a single value of iAUC for a group.

The iAUC values obtained for expert and novice group were 0.68 and 0.66 respectively.

Figure 3.7 shows histograms of the iAUC values for the experts (right) and novices (left).

A two-tailed Students t-test demonstrated that the difference of 2% between the iAUC

values of experts and novices was significant (p < 0.05), indicating the experts are more

likely to have eye movements similar to other experts as opposed to novices and vice-versa.
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None of the above measures take into account the crucial temporal order of the eye

movement sequences (referred to as fixation patterns). The temporal order differences in

global and local temporal fixation patterns between the two groups were explored using

recurrence quantification analysis (RQA). Classical RQA is a technique to investigate

the time evolution of data series widely used in describing complex dynamic systems

[Webber and Zbilut, 1994]. Recently cross-recurrence analysis has been used to investigate

the coupling between speakers’ and listeners’ eye movements [Richardson and Dale, 2005].

The RQA method and measures have been used to investigate the differences in

the spatial and temporal characteristics of expert and novice eye movement behavior

[Anderson et al., 2013]. A brief description of the method that takes fixation duration

into account is provided below.

For a fixation sequence fi and corresponding durations ti, i = 1, . . . N , two fixations

(i, j) are recurrent if they are within certain distance of each other and a recurrence plot

(visualization technique) is created by assigning the sum of the corresponding durations

to the position i, j:

rij =

ti + tj , d(fi, fj) ≤ ρ.

0, otherwise.
(3.1)

where d is the distance metric and ρ is the radius, i.e. the maximum distance between

two fixations to be considered recurrent. Distance can be defined in various ways. This

study used Euclidean distance with radius ρ = 64 pixels, approximately 1.5◦ visual angle

for our experimental setup. The value approximates the size of the fovea and tracker

error in the employed eye tracker. For calculations only the upper triangle is taken into

account since the recurrence plot is symmetric and the diagonal does not provide additional

information.

These plots provide useful visualization of the temporal behavior of a participants’ eye

movements. The four RQA measures used by Anderson et al. and explored in this work are:

recurrence, determinism, laminarity and center for recurrence mass. The recurrence and

center for recurrence mass measures are rather global temporal fixation sequences whereas

local patterns are captured by determinism and laminarity. The sum of recurrences in

the upper triangle is defined as R =
∑N−1

i=1

∑N
j=i+1 rij , and T =

∑N
i=1 ti is the sum of

the fixation durations used for normalization purposes. Each RQA measure quantifies a

certain aspect of the fixation sequence and is defined as:

Recurrence (REC): This measure can be thought of as representing (in percent) how
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often a location is refixated.

REC = 100
R

(N − 1)T
(3.2)

Determinism (DET): Determinism measures how often participants repeat short

subsequences in their overall fixation sequence. Recurrent points in the plot can form

diagonal lines (DL) that indicate repetition of short subsequences. For example if a

participant looks back and forth between two locations creating a repeated pattern, those

fixations would constitute a diagonal line. The reported results were calculated using L =

2 (other line lengths showed similar results).

DET =
100

R

∑
(i,j)∈DL

rij (3.3)

Laminarity (LAM): Recurrent points can also form vertical (VL) and horizontal (HL)

lines. Since the plot is symmetrical, vertical and horizontal lines in the upper half of

the plot are the same as horizontal and vertical lines in the bottom half, respectively. A

vertical line (upper half) indicates detailed rescanning of a location that was previously

fixated with a single fixation. On the other hand, a horizontal line (upper half) shows

brief refixation to a location that was previously scanned in detail with multiple fixations.

Together the horizontal and vertical lines are used to calculate what is called laminarity

representing revisited locations in the scene.

LAM =
100

2R

( ∑
(i,j)∈HL

rij +
∑

i,j∈VL

rij

)
(3.4)

Center of recurrence mass (CORM): This measure quantifies the temporal distribution

of the recurrent points. A small CORM value would mean that most of the refixations

occurred very close in time whereas a large CORM value shows that refixations were widely

separated in time.

CORM = 100

∑N−1
i=1

∑N
j=i+1(j − i)rij

(N − 1)2T
(3.5)

The left panel in Figure 3.8 shows an example of a dermatology image overlaid with a

participant’s fixations and the right panel shows the corresponding recurrence plot. Using

equations described above we obtained 12 participants × 34 images recurrence plots for

the two groups and the four RQA measures. Wilcoxon rank-sum test with p = 0.05 was

used for significance testing to deal with the non-normal nature of the data.



www.manaraa.com

3. EYE TRACKING AND SPOKEN DESCRIPTION 31

Figure 3.8: Left: Hypothetical fixation sequence overlaid on the image to illustrate the
RQA method. Numbers represent fixation order; circles represent a radius of 64 pixels.
Right: Recurrence plot for the scanpath shown on the left. The black squares represent
recurring fixations which means they were within 64 pixel radius of each other. Examples
of diagonal line for determinism (solid green box) and of horizontal and vertical lines for
laminarity (dotted red and dashed blue boxes) are indicated.

Recurrence: Significant difference between experts and novices was observed with

recurrence for experts being lower than recurrence for novices as shown in Figure 3.9.

This shows that expert dermatologists tend to refixate previously inspected areas less

often than novices suggesting that perceptual expertise probably helps experts to quickly

obtain the required information pertaining to a region thereby requiring less rescanning.

Determinism: The results suggest that experts repeat short sequences of fixations less

often than novices. The rank-sum test indicates that the difference is significant and that

determinism is higher among novices.

Laminarity : Experts were observed to be significantly lower in laminarity than were

novices, indicating that they had fewer instances of repeated fixations within a relatively

small region (defined by ρ).

Center of recurrence mass: CORM values among experts were significantly higher,

indicating that experts refixated regions after longer intervals than did the novices. A

probable reason is that experts fixate regions at the beginning of the trial and then revisit

those regions towards the end when confirming their final diagnosis [Li et al., 2012].

Figure 3.9 shows that experts had lower recurrence, determinism, and laminarity. This

suggests that experts are able to weigh a region’s importance after a brief fixation, while

novices exhibit multiple refixations. This could mean that experts use their perceptual

expertise to guide their gaze to maximize information intake. The high recurrence value
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Figure 3.9: Comparison of RQA measures between experts and novices: recurrence,
determinism and laminarity are significantly lower for experts than novices; center of
recurrence mass was higher for experts. These results indicate that experts refixate or
repeat their scanpaths less often and that most of their refixations occur widely separated
in time.

along with higher number of fixations per second for the novice group suggests that novices

are quickly scanning the scene with less strategy thereby having low fixation duration for

individual fixations. On the other hand experts have longer fixation durations meaning

they spend enough time on individual fixations to extract the useful information. This

supports the low values of RQA measures except for CORM indicating involvement of

different type of perceptual strategy by experts in comparison to novices. When viewing

dermatology images the high values of CORM could mean that experts initially inspect

regions that are most informative or important, then fixate regions that might help them

further in their diagnostic path followed by refixations to confirm their inferences. The

sensitivity of the analysis to the parameters L and ρ was also tested. The significance tests

were unaffected by variations in these parameters.

The number of fixations per second among the individuals can affect the RQA

measures. In our work novices (µ = 4.5, SE = 0.02) had significantly higher number

of fixations per second than experts (µ = 3.6, SE = 0.02). The bootstrap technique

[Anderson et al., 2013] was used to test if the observed differences were purely by chance.

All the RQA measures were significantly different for both the groups from those for

random fixation sequences indicating the group behaviors were not random. Motivated by
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these results differences in the RQA measures between attending physicians and in-training

residents were examined. Due to unequal sample size an iterative test was conducted by

comparing the 3 residents with 3 randomly selected attendings. Differences observed were

not significant for all the iterations and depended on the individual attending. Larger

sample size and statistically stronger tools are required to validate if differences exists

between these two groups.

These results suggest that perceptual behavior of experts in a domain can provide

additional cognitive information relevant to the user’s end goal and benefit the image

understanding system, which is the ultimate aim of this work. These results were published

by Vaidyanathan et al. [2014].

3.6.3 Multimodal asynchrony

Researchers have investigated how linguistic and visual information are integrated

during language processing [Ferreira and Tanenhaus, 2007, Ferreira and Henderson, 2004,

Holsanova, 2006]. An observation from prior research is that people do not verbally

mention an object’s name at the same time as they look at it [Meyer et al., 1998,

Griffin, 2004]. To understand if this asynchrony exists in our visual-verbal dermatology

dataset derm i and what factors might influence it we analyzed a subset of eye movement

data in the following way.

The subset comprised of eye movement data for dermatologists inspecting 12

dermatological images. An expert dermatologist selected the 12 images with 6 images

that were easy to diagnose and 6 images that were difficult to diagnose. For each image,

two concrete, frequent clinical attributes, namely primary morphology (e.g. papule) and

secondary morphology (e.g. scale) were selected for analysis. Automatic identification of the

true image regions that represent these clinical attributes is a challenging task. Therefore,

to identify these regions accurately manual annotations were used in this case. An expert

dermatologist marked the image regions that depicted each attribute. The asynchrony was

calculated as the difference between the first time (T1stgaze) the physician gazed in the

marked region and the first mention (T1stattribute mentioning) of the corresponding attribute

(Figure 3.10 (top)).

The analysis showed that gaze in the relevant region preceded the verbal reference to

it in all cases indicated by the positive values of the temporal asynchrony, i.e. participants

consistently looked at the lesion prior to verbally mentioning it. Two one-way between

participants ANOVA was conducted to compare the effect of the type of clinical attribute
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Figure 3.10: Top: Example showing how time of first gaze and first attribute mentioning
(utterance) can be used to calculate Asynchrony ; Here when the first fixation is executed
the word It’s is uttered. At a later point in time the word plaque is uttered. Bottom:
Histogram in the form of line plot for first fixation and for the first attribute mentioning
binned over time scale.
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and image complexity on the asynchrony. There was a significant effect of both the type

of clinical attribute and image complexity on the asynchrony at the p < 0.05 level. Also,

the primary attribute showed a shorter time-lag than the secondary attribute suggesting

that dermatology experts name the primary attribute prior more quickly than they name

the secondary attribute. This further indicates that such variables should be taken into

account when modeling the temporal relation between the two modalities.

Additionally, participants spent on average 3 seconds inspecting the image before they

began to talk. This suggests that physicians might be trying to obtain an initial holistic

view of the image and plan their speech prior to execution. Figure 3.10 (top) shows how

the asynchrony measure can be calculated. Figure 3.10 (bottom) illustrates that physicians

looked at the regions depicting the two attributes at about the same time but mention

the primary attribute prior to mentioning the secondary attribute. This could be because

of how they were taught to perform the diagnoses.

These results bring into focus various factors that affect the temporal relation between

visual and linguistic information processing. This demands further investigation into

mechanisms to fuse information from the two modalities. These results were published

by Vaidyanathan et al. [2012, 2013].

3.6.4 Image processing algorithms and multimodal data

We also performed a qualitative comparison of the well-known local feature descriptor

called Scale Invariant Feature Transform (SIFT) with the collected fixation data. The

union and intersection plots of physicians’ visual fixations for two images from the derm

i dataset are shown in Figure 3.11. The union plots were quite similar to the local feature

plots. The intersection plots, on the other hand, provided ROIs that are potentially most

diagnostic. Data indicate that physicians, due to image center-bias which is an observer’s

tendency to look at the center of an image [Tatler, 2007], fixate near the center of images for

the first few fixations. However, they are very quickly drawn towards the regions of interest.

There is a strong connection between lesion location and the eye movements suggesting

that during image inspection the effect of viewer center bias is drastically reduced. Results

from this analysis suggest that SIFT feature descriptors have moderate amount of overlap

with eye movement locations and can potentially be useful in the identification of regions

of interest when dealing with large datasets.

It would be beneficial to develop image processing algorithms that are able to extract

perceptually important regions. Although SIFT descriptors provided a close approximation
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Figure 3.11: Illustration of (a, b) Union of all participants’ fixations; (c, d) intersection
of 80% of all participants’ fixations; (e, f) SIFT plots for the two cases of psoriasis and
pemphigus vulgaris, respectively.

to eye movements, the number of these descriptors is huge; thus gaze data can be used

to filter unwanted descriptors. In an attempt to achieve this, a correlation between

perceptually-relevant image regions obtained through eye movements and individual

clusters of image regions identified through k -means clustering was investigated. Judging

the segmentation output for various values of k visually, a value of k = 4 was selected

because higher values lead to oversegmentation. CIELAB color space and the data from

the derm i were used. To measure the correlation between participants’ gaze and the

segmented image regions, a metric called fixation ratio was defined. This metric was useful

in capturing the cluster that would most effectively segment the primary region (lesion)

in the image. For each image we calculated the fixation ratio as follows:

1. The original RGB images were converted into CIELAB and a-b vectors were used as

input for the k -means algorithm, dividing each image into 4 clusters. This generated

a segmentation map for each of the 50 images, each with four clusters.

2. The intersection map for each image was overlaid on the corresponding segmentation
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Figure 3.12: Panels (a, d) fixations (blue dots) overlaid on original images. Panels (b,
e) fixations (blue dots) overlaid on the segmentation maps of panel (a) and panel (d)
respectively. Panels (c, f) cluster picked using the fixation ratio measure.

map to obtain the number of fixations falling in each cluster.

3. These fixations were normalized by the total number of fixations in the intersection

map, generating relative fixations per cluster.

4. Similarly, the relative area per cluster for the segmentation map was obtained.

5. Fixation ratio for every cluster was obtained by dividing the relative fixation from

step 3 by relative area from step 4.

Visualization of the intersection fixation data overlaid on the segmentation map as shown

in Figure 3.12 illustrates that k -means was effective in isolating the primary region (lesion)

with high visual interest to the physicians. The high relative fixation on one of the clusters

shown in Figure 3.12 and low relative area resulted in a high fixation ratio that also

provided a quantitative measure to select this cluster as the most perceptually relevant.

Figure 3.13(a) shows the fixation ratio value of every image in derm i. From these

values it is evident that many images score higher than the average fixation ratio of 3.38.

Twenty-two out of 50 images had a value higher than the average indicating the usefulness

of k -means. Figure 3.13(b) compares the fixation ratio metric using the two types of
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Figure 3.13: (a) Graph showing the fixation ratio for every image; (b) Comparison of
fixation ratio generated using the binary (non-foveal) and grayscale (foveal) fixation map
for four example images.
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fixation maps, one with no involvement of a Gaussian function and the other generated

using a Gaussian function. Thus clusters resulting from k -means and SIFT descriptors in

conjunction with gaze data can be used to identify perceptually important image regions.

Additionally, the fixation ratio method can be used to determine the degree to which

existing image processing algorithms can capture the diagnostically relevant image regions.

These results were published by Li et al. [2010] and Vaidyanathan et al. [2011].

Therefore, the preliminary work using derm i and nov dataset shows that capturing

perceptual behavior of experts is important and can help bridge the semantic-gap between

perceptually important regions of interests and regions extracted by image processing

algorithms. The underlying foundation of the present work is that end users possess special

perceptual knowledge and that eye movements and spoken description can provide insights

into this expertise or information, which can help image annotation. Additionally, the

results indicate the existence of a temporal asynchrony between gaze and speech. The

fundamental question that arises now is: What is the relationship between eye movements

and spoken description during image inspection? These results motivated the proposed

multimodal integration framework and suggested that the relationship depends on various

other factors.

3.7 Summary

To sum up, the preliminary result obtained from derm i and nov datasets illustrate that

experts behave differently. The work was then extended to collect the derm ii dataset.

These results motivated us to investigate the asynchrony between visual and linguistic data

and integrate them using techniques such as alignment for the purpose of image region

annotation. To comprehensively study how bitext alignment can be applied to image

datasets of varying scope, we explore its use both on expert domain images (derm ii)

and on general-domain images. Thus, in addition, we collected snag, a dataset involving

general-domain images. This dataset is a unique resource and contribution of this work

and is discussed in detail in the next chapter.



www.manaraa.com

4

SNAG: Spoken Narratives and

Gaze Dataset

4.1 Motivation

To establish the generalizability of our framework, we must apply it both to specific-domain

images (e.g. derm ii) and general-domain images. Thus, we collected snag to help

investigate whether the multimodal framework would (1) apply to any type of image

including general-domain images and (2) be scalable to a larger dataset To limit the

vocabulary used for descriptions we recruited native speakers of American English.

Additionally, we used automatic speech recognition tools to eliminate human intervention

in the framework. Importantly, this dataset is being released to the larger research

community, making it the first publicly available dataset that consists of co-captured

gaze and spoken image description data.

4.2 Gaze-verbal data collection for general users

Data collection involved 40 native speakers of American English, ranging in age from

18 to 25 years, viewing and describing 100 general domain images. The general-domain

images were selected from a larger open-source dataset called mscoco (Microsoft Common

Objects in Context) [Lin et al., 2014] which consists of more than 300,000 images. Some

images from mscoco used in our data collection are shown in Figure 4.1. Widely used by

the computer vision community, the mscoco dataset was created by pooling images from

40
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Figure 4.1: Example images from mscoco used in the data collection process. The images
vary in number of objects, scale, lighting, and resolution posing challenges to the alignment
framework.

various sources, such as Flickr, and crowdsourcing them to obtain segments and captions.

The crowd workers were provided with a list of object categories such as cars for which

they had to identify the object’s location in the image and draw its outline. They were

also asked to provide short captions for the entire image. The images represent complex

everyday scenes containing common objects in their context. For our dataset the primary

researcher selected images so that typically they would depict an event with at least one

initiator of the event and one target of the action, often respectively known as the agent

and the patient in linguistic semantic role labeling. Of the selected 100 images, 69 images

clearly depict at least one event whereas remaining 31 images may not necessarily represent

an event. The mscoco images vary in number of objects, scale, lighting, and resolution

as exemplified in Figure 4.1.

Participants were recruited campus-wide from Rochester Institute of Technology. The

participants were given cookies and either a chance to enter a raffle or course credits for

their participation. Gaze data was collected using SensoMotoric Instruments (SMI) RED

250Hz eye-tracker attached to a display as shown in Figure 4.2. The reported accuracy of

the RED 250 eye-tracker is 0.5 degree. It is a non-intrusive and remote eye-tracker that

monitors the participants’ gaze. Each image was presented to the participant on a 22-inch

LCD monitor (1680× 1050 pixels) located approximately 68 cm from the participant. At

68 cm, the full display subtends 38×22 degrees of visual angle. We use a double computer

set-up with one computer used to present the image and the other used to run the SMI

software iViewX gaze tracking system and Experiment Center 2.3. After each stimulus,

a blank gray slide was inserted to ensure that the gaze on the previous stimulus did not

affect the gaze on the following stimulus. The blank gray slide was followed by a test slide
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Figure 4.2: Data collection set-up used for the snag dataset experiment. The SMI
eye-tracker that records the gaze data is attached underneath a display that displays
the stimuli. The participant wears a lapel microphone connected to a TASCAM recorder
that records the spoken descriptions. The task requires the participant to describe the
action in the image to the experimenter.

Table 4.1: Sample raw data as obtained from SMI eye tracker showing from left to right:
system timestamp, left-eye horizontal and vertical fixation locations, right-eye horizontal
and vertical locations, left-eye and right-eye event, respectively.

Time Lx[px] Ly[px] Rx[px] Ry[px] L Event R Event

7456470899 550.0 406.07 550.0 406.07 Fixation Fixation

with a small, visible target at the center with an invisible trigger area of interest. Using

the test slide we could measure the drift between the location of the target at the center

and the predicted gaze location over time that may have occurred due to the participants’

movements. A TASCAM DR-100MKII recorder with a lapel microphone was used to record

the spoken descriptions. A validation was performed every 10 images and re-calibration

applied if the participant’s validation error was more than one degree. To approximate the

Master-Apprentice data collection method that helps in eliciting rich details, participants

were instructed to describe the event in the images to the experimenter. The participants

were instructed to “describe the action in the images and tell the experimenter what is

happening.” Participants were given a mandatory break after 50 images and otherwise

smaller breaks if needed to avoid fatigue.
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Figure 4.3: Example of multimodal data. On the left is the automated transcription of a
participant’s spoken description. We can see that apart from the incorrect transcription of
Kate as opposed to cake, the ASR transcription performs quite well. On the right is the eye
movement data for the same participant overlaid on the corresponding image. The green
circles show fixations with the radius of the circles representing the duration of fixation.
The green lines connecting two fixations represent saccades.

Table 4.2: Comparison of mean calibration accuracy for the four datasets. The snag
dataset is comprised of approximately the same number of participants as the derm ii
dataset but consists of more than three times the number of images used in the derm ii
dataset.

Dataset X Mean X SD Y Mean Y SD Participants Images

derm i 0.51 0.13 0.51 0.09 12 (75%) 50
nov 0.63 0.29 0.70 0.14 12 (100%) 34

derm ii 0.71 0.16 0.81 0.23 26 (86%) 29
snag 0.67 0.25 0.74 0.27 30 (75%) 100

4.3 Fixations, narratives, and data quality

The SMI software package BeGaze 3.1.117 with default parameters and a velocity-based

(I-VT) algorithm was used to detect eye-tracking events. An example of the detected

fixations is shown in Table 4.1. Figure 4.3 shows an example of the scanpath, i.e.

fixations (green circles) and saccades (green connecting lines) of an observer overlaid on

the corresponding image. The alignment framework exclusively uses fixation data. Nine

participants had a mean calibration and validation accuracy greater than two standard

deviations in either horizontal or vertical direction. One participant had partial data loss.

These 10 participants were removed. The mean calibration accuracy for this dataset is

reported and compared to other datasets in Table 4.2. The corpus size is 3000 instances

of image descriptions (100 images × 30 participants), with 13 female participants and
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Figure 4.4: Examples of the transcribed speech for two participants obtained using IBM
Speech-to-Text tool. The descriptions belong to the image shown in Figure 4.3. While
the narrative on the left from Figure 4.3 has one incorrectly transcribed word (Kate
where the correct word is cake) highlighting that using automated transcription can save
manual labor, the narrative on the right shows the limitations of ASR use with more word
transcription errors. For the narrative on the right, the correct transcription for the words
but since we as, intraparty, fighting, lastly are there seems to be a, in a party, cutting,
possibly respectively.

Table 4.3: Mean, standard deviation, minimum, and maximum number of word tokens,
word types, and type-token-ratio over 3000 narratives (30 observers, 100 images) for the
snag dataset. The high value of mean type-token ratio indicates higher lexical diversity.

Mean SD Min. Max.

No. of Tokens 55 31 5 295
No. of Types 38 17 5 132

Type-Token Ratio 0.75 0.11 0.41 1

17 male participants. The speech recordings for the 30 participants for 100 images

were machine-transcribed using the cloud-based IBM Watson Speech-to-Text service,

an Automatic Speech Recognition (ASR) system accessible via a Websocket connection

[IBM, 2015]. Example output is shown in Figure 4.3 (left panel). Figure 4.4 shows a

additional comparison of output from the IBM Speech-to-Text tool for two observers for

the same image as in Figure 4.3 (right). The transcription in Figure 4.4 (left) highlights

that modest transcription errors may be accepted given the substantial reduction in the

manual labor involved in speech transcription for large datasets. However, transcribed

output on the right in Figure 4.4 shows a number of transcription errors thereby indicating

that there is still room for improvement in applying ASR in the framework. All of the

spoken descriptions for a subset of 5 images from the snag dataset were manually corrected
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Figure 4.5: Scatter plot showing mean word types vs. mean word tokens for each image
across all observers. Each image is a data point. Highlighted images are shown at the
bottom (green) and on the right (magenta).

using Praat [Boersma, 2002] to be able to empirically explore the utility of substituting

automatically generated transcriptions for careful but laborious manual transcriptions.

First-order descriptive analysis of the gaze and narratives show that the average

fixation duration across the 30 participants was 250 milliseconds and average duration

of narratives was about 22 seconds. Both these values are lower in comparison to that of

the derm ii dataset. The IBM transcribed narratives were segmented into word tokens

using the default NLTK word tokenizer. Various measures for the first-order analysis of

the narratives were then calculated. Table 4.3 shows the mean number of word tokens and

word types, and mean type-token ratio across all the 3000 narratives (30 participants, 100

images) along with the standard deviation, minimum and maximum number of tokens,

types, and type-token ratio. The mean number of tokens and the average duration of

narratives together suggest that on average observers uttered 2.5 words per second. This

value is higher than for the derm ii dataset. The mean type-token ratio of 75% in Table 4.3

suggests that there is significant lexical diversity across the dataset supporting the richness

of the dataset. Figure 4.5 shows a scatter plot for the mean number of word types against

the mean number of word tokens for the 100 images. The plot is linear since higher number

of tokens typically result in higher number of types. Images 23, 3, and 24, highlighted in
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Figure 4.6: Bar plot showing the mean number of word tokens, word types, and type-token
ratio (TTR) for each observer across the 100 images. All the observers have a mean
type-token ratio greater than 0.6 suggesting stronger lexical diversity. Observer number
28 has the highest mean type-token ratio.

green, have fewer mean word tokens and types than images 35, 90, and 94, highlighted

in magenta. For this dataset, this may be due to the number of significant objects in the

images where a significant object is defined as an object that occupies a significantly large

area of the image. Images 23, 3, and 24 have on average two objects while images 35,

90, and 94 have more than two. Comparing the two extremes image number 23 has two

significant objects (cat, toilet) whereas image number 35 has around five objects (female

1, female 2, female 3, female 4, laptop). The number of significant objects together with

the task instruction may have resulted in the distribution obtained in Figure 4.5. Both the

datasets suggest that higher number of visually important regions in the image tend to

result in higher number of word tokens and types. Figure 4.6 shows the mean word tokens,

mean word types, and mean type-token ratio for each observer across all the images. The

high values of the mean type-token ratio suggest lexical richness and heterogeneity present

in the descriptions provided by the observers.

In both datasets, participants would initially pause and then begin the verbal

description but in the derm ii dataset the initial pause was approximately 2.7 seconds

longer than in the snag dataset. The reason for this may be that the diagnostic task is a
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complex cognitive task requiring longer time for the experts to ensure that their spoken

description content is correct. Again, task instructions may also have contributed.

4.4 Summary

To sum up, the snag dataset is a unique, novel resource that helps us investigate the

applicability of the alignment framework on general-domain images where no particular

expertise is required to perform the image-inspection task. This dataset can also provide

insight into how humans process and describe everyday images involving common objects.

Use of automatic speech recognition takes us further in making the framework completely

automated. Thus, using both the derm ii dataset discussed in Chapter 3 and the snag

dataset discussed in this chapter, we explore the applicability of the alignment-annotation

framework as discussed in the next chapter.
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Visual-Linguistic Alignment

This chapter describes an overview of the alignment-annotation framework in Section

5.1. This is followed by Section 5.2, which explains how we extract linguistic and visual

units for the derm ii dataset and align them. In Section 5.3, we describe the framework

with respect to the snag dataset. Sections 5.4 and 5.5 describe how we obtain reference

alignments and baseline alignments, which we use for the evaluation study in Chapter 6.

5.1 Overview of framework

The alignment-annotation framework, shown in Figure 5.1, consists of four major steps:

1. collecting multimodal data, 2. collecting and retrieving units of analysis, 3. multimodal

bitext alignment, and 4. labeling the image regions. Step 1 involves collection of multimodal

data, as described in Chapters 3 and 4. Additionally, the raw audio and gaze data are

processed to obtain transcriptions and fixations, respectively, that act as input to step 2.

In step 2, we extract the units from the transcripts and fixations. These extracted linguistic

and visual units are then fed into the bitext alignment in step 3, where they are aligned.

In step 4, image regions are labeled using the output from the alignment.

5.2 DERM II visual-linguistic alignments

5.2.1 Linguistic units

The dermatologists’ audio recordings were transcribed verbatim, as shown in Figure 5.2.

Visual inspection of the transcripts revealed that the important dermatological concepts

48
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Figure 5.1: Implemented alignment-annotation framework. The snag dataset is used
as an example to show the framework. The collected multimodal data is processed to
retrieve visual and linguistic units of analysis that are then fused using multimodal bitext
alignment, resulting in automatically annotated image regions.

used by the experts tended to be nouns and adjectives. After performing minor text

normalization, we parsed the transcripts with the Berkeley parser, using the English

grammar that is included as part of the code distribution [Petrov and Klein, 2007]. From

the parsed output we extracted all types of adjectives (e.g. red), singular and plural nouns

(e.g. papules), singular and plural proper nouns (e.g. Achilles), gerunds (e.g. resolving),

and foreign word (e.g. erythema) tokens. These tokens were then filtered to remove

stopwords (e.g. okay, the) along with words used by the observers when following the

task-specific instructions to provide a differential, diagnosis, and certainty of that diagnosis

(e.g. diagnosis, ninety percent). Also removed were the names of diagnoses themselves (e.g.

psoriasis, basal cell carcinoma), given that diagnoses correspond holistically to the entire

image rather than to a specific image region. Importantly, throughout this pre-processing,

the linear order of both the linguistic and visual units was maintained. Figure 5.2 shows

the linguistic units extracted for a speaker for the image shown in Figure 5.3.

5.2.2 Visual units

Output from the eye tracker consisted of fixation locations given as x, y coordinates

and fixation durations per image per observer as shown in Figure 5.2. We encoded

fixations using three different techniques: grid-based image segmentation, mean shift
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Figure 5.2: The left panel shows an excerpt of a transcribed narrative, the process applied
for identifying linguistic units, and the resulting tokens or linguistic units. The right panel
shows eye movement data, the process applied in the case of the eye-tracked data, and
the resulting gaze-filtered image regions or visual units. The linear order of the units is
maintained and reflected in parallel multimodal data sequences. These linguistic and visual
units jointly act as input to the Berkeley aligner, taking a bitext alignment approach to
associate identified important lexical items and image regions with each other.

fixation clustering (MSFC), and k -means image segmentation.

The most straightforward method to segment an image is to divide it into a grid, as

shown in the leftmost panel in Figure 5.3. Each image is 1680× 1050 pixels and is divided

into a grid of 5 rows and 5 columns. Each cell in the grid is associated with a label that

encodes the row and column number for that cell (e.g. r3c9, r4c12). The fixations of an

observer are overlaid on this grid and each fixation is labeled according to the grid cell it

falls within. In this way, we obtain a linearly ordered sequence of visual units consisting

of fixated image regions, encoded using the grid labels.

Visual inspection of the scanpaths of observers suggested existence of latent groups

of fixations. To explore this further, we used the mean shift fixation clustering algorithm

(MSFC) [Santella and DeCarlo, 2004]. The mean shift algorithm is a data-driven method

that clusters visual fixations into so-called regions-of-interest. The advantage of using mean

shift (MSFC) over other techniques is that MSFC does not require prior knowledge of the

number of clusters and additionally is marked by robustness as mean shift is insensitive

to outliers. In this work we cluster the fixations spatially but also note that the same

method could be used to cluster fixations temporally. For each image, fixations are collected

from observers’ eye-tracking output. Following this mean shift clustering is applied in
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Figure 5.3: The three different fixation labeling techniques used to obtain visual units.
Each method clusters/segments the image in a different way following which the fixations
are overlaid to extract visual units.

which each fixation is assigned to a cluster of fixations in the same general region of the

image. Figure 5.3 shows fixations from all observers for an image clustered here into 13

clusters. Clusters such as 10 in the top left corner of Figure 5.3 contain fixations outside

of the image regions mostly due to blinks or track losses by the eye tracker. Such clusters,

along with their associated fixations, are removed. For each observer, we then utilized

this cluster information to obtain a linearly ordered sequence of visual units (i.e. image

regions determined by fixations) that acts as the other input to the alignment algorithm.

An example is shown in Figure 5.2. On average for this dataset, the MSFC method yields

approximately 10 clusters.

The third method used here is called k -means [Lloyd, 1982]. The k -means clusters

image pixels together based on the input features. It is fast, simple, and straightforward

to understand. Prior research has shown that Lab color features are particularly useful for

dermatological images [Bosman et al., 2010]. As briefly mentioned in section 3.6.4, each

image is first converted into Lab color space, where the L channel represents illumination,

the a channel indicates redness-greenness, and the b channel indicates blueness-yellowness

in the image. Following this, Lloyd’s k -means algorithm is applied, resulting in a segmented

image in which each pixel is labeled with the segment label it is a part of. This is shown

in the rightmost panel in Figure 5.3. Although the value of k can vary depending on the

image and task, we chose k=4, since lower values miss the primary lesion present in the

images. Values higher than 4 tend to over-segment many images. The fixation sequences

are overlaid on the segmented image and encoded using the segment label they fall within,

without loss of linear order.
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Figure 5.4: Toy example illustrating the bitext alignment between Hindi and English
sentences. The probability of English word house being a translation of Hindi word ghar
increases (black to orange to green) as more parallel sentences containing the two words
are added to the training data.

5.2.3 Bitext alignment

Studies have reported that fixations are generated before the end of words

and that participants look at an object prior to naming it [Meyer et al., 1998,

van der Meulen, 2003]. Additionally, our preliminary analysis showed that there is a

temporal lag between when fixations on an object begin and when the person begins

naming it. For this reason, visual and linguistic units cannot be aligned merely by

considering their time of occurrence. Instead, we require a method that can perform the

alignment without making assumptions about the temporal relationship between the units.

Conceptually, this is similar to translating one language into another in that the structural

characteristics of the source language may not parallel those of the target language. We

take advantage of this insight to explore whether a bitext alignment approach can discover

meaningful alignments of multimodal data. In statistical machine translation (MT), word

alignment models are derived using a parallel corpus of sentences in which each sentence

is rendered in two different languages. Figure 5.4 shows a Hindi-English toy example.

The principle behind word alignment is as follows: proceed through each pair of training

sentences, keeping track of the number of times words co-occur in the two languages.

Using these word counts the algorithm builds the probability that a given word in one

language (English) is a translation of a word in another language (Hindi). For example, the

probability of the English word house being a translation of the Hindi word ghar increases

as more number of sentences containing the two words are processed by the algorithm.

In the multimodal scenario of this study, the linguistic (nouns, adjectives, gerunds, and

foreign words) and visual (numeric labels of cluster/segments) units extracted for an image
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Figure 5.5: Left: Linearly ordered linguistic units obtained from the transcribed narrative.
Right: Linearly ordered visual units obtained by labeling fixations using the MSFC
algorithm. The labels are different when using other segmentation methods for identifying
visual units. Note the linguistic units or visual units are not isochronous. Therefore, the
number of linguistic units or visual units between the sliding windows may be different.

representing a pair of “sentences” in the training data. Given the small number of observers

per image (29), we get a parallel corpus too small to provide sufficient training data for

developing a robust alignment model. It is therefore necessary to increase the size of the

training dataset. Utilizing a sliding window of T -seconds where T = 5, linguistic and

visual units within each sliding window are extracted and added as additional “sentences”

or multimodal data pairs to the corpus, as shown in Figure 5.5. Therefore, the number

of linguistic or visual units can be different between the sliding windows. By applying

the sliding window incrementally, the parallel corpus grows substantially. The original

linguistic and visual unit sequence pair, on which the sliding window is applied, is also

included in the training data.

Another complication in using this multimodal data is that the sequences of visual

units are substantially longer than the accompanying sequences of linguistic units. In

order to balance the sequence lengths, we merge contiguous identical visual units (e.g.

cluster3, cluster2, cluster2, cluster3 is converted to cluster3, cluster2, cluster3 ). This

is applied to each sliding window. Subsequently, visual units with the longest fixation

duration are selected (keeping the linear order intact) based on the visual-linguistic ratio.

The visual-linguistic ratio is defined as β = Numberofvisualunits
Numberoflinguisticunits , where β = 1 results in
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Figure 5.6: Example training data: A sliding window of 5 seconds is applied to the pair
of visual and linguistic “sentences” to expand the data. Subsequently, contiguous visual
units are merged and visual units with longest fixation duration are selected. The selected
visual units, together with the linguistic units, comprise the training data.

an equal number of visual and linguistic units within each data pair. We also report on

the impact of changing the value of T and β as well as the visual unit selection method

(α), on the framework’s performance1. Using the above method the training data for each

image increased to approximately 1000 sentences. An example of our training data for the

derm ii dataset is shown in Figure 5.6.

We use the Berkeley aligner [Liang et al., 2006] rather than Giza++ [Och et al., 2000]

because of its reported higher alignment accuracy and flexibility in testing an existing

alignment model on unseen data. One of the biggest strength of the Berkeley aligner is

the use of joint training. Further details can be found in Liang et al. [2006]. The Berkeley

aligner was run with default parameters settings (2 iterations each of IBM Model 1 and an

HMM, joint training, and posterior decoding) with the exception of the posterior threshold

used for decoding, which was lowered to 0.1. This value was empirically determined to

maximize alignment accuracy on a small held-out set of multimodal data.

1We empirically studied the impact of selecting visual units and the values of other parameters in
different ways.
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Figure 5.7: Process to extract linguistic and visual units for an image in the snag dataset
for the MSFC clustering method. The original narrative is automatically transcribed using
ASR and linguistic units are extracted. Transcription errors are not corrected manually in
order to investigate their effect on the framework. Also, word tokens occurring only once
per image such as wrapped are removed. This is because word tokens transcribed only
once may not necessarily belong to any particular region in the image, or may introduce
the idiosyncratic behavior of a participant. Similarly, fixations are labeled based on the
cluster they belong to according to the MSFC for the particular image.

5.3 SNAG visual-linguistic alignments

The following section describes in detail the alignment framework for the snag dataset.

5.3.1 Linguistic units

As described in Chapter 4, to automate the transcription process, we used IBM Watson

Speech-to-Text service for automatic transcription of the audio recordings. Recordings

of the descriptions were transmitted as wav files over a WebSocket connection to the

Speech-to-Text service which returns transcription results in JSON format. As before,

we parsed the original narratives using Berkeley parser and filtered to remove stopwords.

Additionally, we removed any word tokens that was transcribed only once for a given image.

This is because word tokens with an utterance frequency of one provides less confidence

that the word tokens can be associated to a particular region in the image. Frequency of

word tokens in the narratives per image is another parameter that needs to be explored in

the future. The linear order is maintained. Figure 5.7 shows an example of the linguistic

units obtained for this dataset. There are some errors introduced by the ASR system such
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Figure 5.8: Original image (top-left), MSFC (top-right), k -means (bottom-left, k=13 for
this image) and GSEG (bottom-right) clustering or segmentation output for the image,
used for extracting visual units.

as knife transcribed as life, which we do not correct. One reason behind not correcting

these errors is to investigate the resulting effect on the performance of the framework.

5.3.2 Visual units

For the snag dataset we used three types of clustering or segmentation methods:

mean shift fixation clustering (MSFC), k -means, and gradient segmentation (GSEG)

[Ugarriza et al., 2009]. The outputs of the three clustering or segmentation methods are

shown in Figure 5.8. The MSFC method is the same as described in section 5.1 for derm

ii dataset. For this dataset, on average MSFC yields approximately 11 clusters per image.

For the k -means, we do two things differently compared to the derm ii dataset: (1)

instead of fixing k to an empirically found value, we applied MSFC to the fixation data

for each image and used the number of clusters obtained by MSFC as k, and (2) we

use RGB and spatial features as input to the k -means algorithm. For this dataset, k

means with RGB features was visually judged to provide better segments than with

Lab features. For the sake of clarity, we will refer to this approach for k -means as the

modified k-means. The GSEG method efficiently integrates spectral intensity, gradient,



www.manaraa.com

5. VISUAL-LINGUISTIC ALIGNMENT 57

and texture information for segmentation purpose. It uses color space gradient information

to identify clusters in an image, characterizes the texture in the identified clusters, and

applies a region-merging procedure to generate a final segmentation. Sankaranarayanan

Piramanayagam, a researcher at Rochester Institute of Technology working on improving

the GSEG algorithm, provided us with the non-released version of the toolbox that was

applied to the snag images with its default values. Further mathematical details about

GSEG can be found in Ugarriza et al. [2009].

5.3.3 Bitext alignment

Once the visual and linguistic units were obtained as explained above the same bitext

alignment process as used for derm ii dataset was applied. The training data size was

increased using the sliding window, and sequence lengths of visual units was balanced. This

parallel corpus was treated as input to the Berkeley aligner with the same configuration as

that used in derm ii dataset. Effects of various parameters on the output of the framework

for this dataset are discussed in Chapter 6.

5.4 Reference alignments

Reference alignments (ground truth) were prepared using a GUI (Figure 5.9) to allow

evaluation of the resulting multimodal alignments. This represented the manual alignments

obtained by associating each fixation cluster in the case of mean shift fixation clustering

and image segment in the case of image segmentation with its corresponding word tokens

(linguistic units). Figure 5.9 shows a screenshot of the GUI developed specifically to allow

the annotator to perform the manual alignments by drawing borders around image regions

and then selecting linguistic units from a pop-up box that contains all the linguistic units

for that image. The output from the GUI consists of sets of image pixel coordinates labeled

with one or more associated linguistic units, which are then processed to obtain linguistic

units corresponding to either fixation clusters in the case of MSFC or image segments in the

case of grid-based, k -means, and GSEG. Based on their confidence level, the annotators

specify two kinds of alignments sure (S) and possible (P) [Och and Ney, 2003]. sure

alignments define alignments where there is no ambiguity and the annotator’s confidence

is high. For example, for the image in Figure 5.9, the annotator aligned the word plates to

the image region circled in black with high confidence. This pair of alignment is therefore

added to the set of sure reference alignment (set S). However, the annotator was not



www.manaraa.com

5. VISUAL-LINGUISTIC ALIGNMENT 58

Figure 5.9: Graphical user interface used to acquire reference alignments. The person
preparing the manual alignments is able to draw borders around regions and label them
with linguistic units. For this image, all pixels within the black border are marked as plates
in the sure alignments whereas all pixels within the white border are marked as Ironman
in the possible alignments.

absolutely certain if the word Ironman belongs to the region circled in white, thereby

adding this alignment pair to the possible reference alignment (set P).

For the derm ii dataset, a dermatologist involved with the project from an early stage

constructed the sure manual alignments. The primary researcher of this work indicated

the possible alignments. While not a dermatologist, the researcher spent prolonged time

with these images and dermatological vocabulary. All the manual alignments were done

using the post-filtered word tokens. An important observation was that not all the linguistic

units present in the narratives were present in the image. Therefore, these linguistic units

would also be absent from the reference alignments that is used for evaluation. Only

roughly half of the linguistic units present in the narratives are also present in the image

and therefore in the reference alignments is indicated in Table 5.1. For example, words such

as rare and well-formed were present in the narratives but not in the image. Therefore,

these words were not present in the reference alignments. Given its general-domain nature,

the primary researcher of this work performed both the sure and possible manual

alignments for the snag dataset. For this dataset, the percent of linguistic units present
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derm ii snag

Total no. of linguistic units in narratives 11792 34621

No. of linguistic units in narratives and images 5776 25225

% of linguistic units in narratives and images 48.9 72.8

Table 5.1: Linguistic units present in both the narratives and the images for the
general-domain snag dataset is higher than for the derm ii dataset. For the knowledge
intensive expert domain derm ii dataset, many words such as atypical were present in the
narratives but not in the image possibly reflecting the use of nonvisual cognitive diagnostic
concepts. An example for the snag image shown in Figure 5.9 is the word camera that
was present in the narratives but not in the image.

in the narratives that are also present in the image is close to three-fourths, substantially

higher than that for the derm ii dataset. One reason for low overlap in the derm ii

dataset could be that the dermatologists were trying to draw inferences based on the visual

information given the task instructions. Additionally, the interpretation of linguistic units

obtained through spoken description is complex. Therefore, focus is more on manually

annotating the linguistic units where the interpretation is clear to the annotator. For

example, for the image shown in Figure 5.3 few observers uttered the word patch instead

of macule. Intuitively one might say the observers were looking at the correct region and

meant macule; however, for the purposes of annotation the word patch was not considered

for manual annotation. This results in lower overlap between reference alignments and

linguistic units. Fewer occurrences of such uncertainty was observed in the snag dataset

due to the general-domain scope.

5.5 Baseline alignments

We compare the performance of the proposed alignment method with two other temporal

methods of alignment, namely simultaneous and 1-second delay baselines. Figure 5.10

shows the simultaneous (solid line) and 1-second delay (dashed line) baseline for an

example set of visual and linguistic units. Simultaneous baseline alignments are obtained

under the assumption that the observers utter the word corresponding to a region at the

exact moment their eyes fixate on that region. The 1-second delay baseline assumes that

there is a 1-second delay between a fixation and the utterance of the word corresponding

to that region, based on prior research [Griffin, 2004]. Although the amount of delay is a

parameter that can be varied for comparison against the proposed alignment, we believe
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Figure 5.10: Visual units are aligned with linguistic units uttered simultaneously (solid
line) and after 1-second delay (dashed line) for the image shown in Figure 5.7.

a fixed-delay will not be capable of aligning words to regions in all cases. This is because

prior research has shown that the delay between when a person looks at an object and

mentions it depends on various factors such as usage frequency of the object’s name

and complexity of the name [Griffin and Bock, 2000, Griffin, 2004], and there is variation

[Vaidyanathan et al., 2012].

5.6 Summary

This chapter described in detail the alignment-annotation framework proposed in this

work. In summary, multimodal data elicited from participants is processed to obtain

linguistic and visual units of analysis using various methods that are then aligned using

the Berkeley aligner. In the next chapter we discuss the evaluation of the output from the

alignment framework against the reference and baseline alignments.
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Results and Discussion

This chapter presents the evaluation metrics used in section 6.1. Section 6.2 discusses the

effects of various parameters and their default values used for the results obtained. This

is followed by the analysis and discussion of our results for the derm ii dataset in Section

6.3 and snag dataset in Section 6.4, respectively.

6.1 Evaluation of results

Figure 6.1 shows the framework output for a given linguistic and visual “sentence” pair.

We use the following metrics and equations from Och and Ney [Och and Ney, 2003] to

test how well the framework identifies the correct word-region correspondences compared

to the reference alignments:

Precision =
|A ∩ P |
|A|

(6.1)

Recall =
|A ∩ S|
|S|

(6.2)

Alignment Error Rate = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(6.3)

where A, S and P are number of visual-linguistic unit pairs in the output from the

framework, sure reference alignments that involves no ambiguity in the alignments, and

possible reference alignments in which alignments may have some ambiguity, respectively.

AER is the Alignment Error Rate, which is commonly used to evaluate word alignment in

61
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Figure 6.1: Example illustrating output from our framework, the reference alignment,
and baseline alignment for a given pair of linguistic and visual “sentences”. Linguistic
units, such as atypical, that do not appear in the image are not present in the reference
alignments.

machine translation. A high precision and recall resulting in low AER is considered good.

The image regions and their labels change with the segmentation technique being used.

Therefore, each segmentation method has its own set of simultaneous and 1-second delay

baselines, reference alignment, and alignments from the proposed framework that are used

to compute the metrics. In general, the 1-second delay baseline tends to perform as well

as or better than the simultaneous match baseline.

A qualitative visualizer was built to visualize the resulting annotations corresponding

to the image regions. The visualizer sorts the words in increasing order of frequency of

utterance and displays Wwords on the corresponding image region locations. The number

of visualized words W, if needed, can be different for different images. Various results

shown and discussed in this chapter use the visualizer with the value of W ranging from 2

to 4 in order to illustrate the output annotations. Low values of Wwere picked to avoid

clutter for illustration of results.

6.2 Effect of parameters

The alignment framework is built based on various parameters ranging from the minimum

fixation duration used for the process of identifying fixations and saccades in BeGaze to

the value of posterior threshold used in the Berkeley aligner. We experimented with the

parameters sliding window (T ), visual-linguistic ratio (β) that ensures equal length of
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Figure 6.2: General effects on performance per parameter. The effect (positive or negative)
reflected all measures. Default values used in this work resulting in high performance are:
α = longest duration, β = 1, and T = 5 seconds.

grid-based MSFC k -means

Precision Recall AER Precision Recall AER Precision Recall AER

Simultaneous 0.32 0.27 0.72 0.36 0.44 0.61 0.39 0.44 0.59

1-second delay 0.34 0.28 0.70 0.38 0.44 0.61 0.40 0.44 0.59

Alignment framework 0.38 0.29 0.68 0.45 0.56 0.51 0.41 0.56 0.54

% improvement (over 1-second delay) 4 1 2 7 12 10 1 12 5

Table 6.1: Comparison of alignment performance, average across images. The proposed
framework, specially using, MSFC tends to performs the best for the derm ii dataset.
The last row shows the absolute improvement (in percentage) achieved by the different
clustering or segmentation methods over the 1-second delay baseline.

sequences of visual and linguistic units, and method of visual unit selection referred to as

fixation selection method (α). As illustrated in Figure 6.2, the general trend was similar for

both dataset. When the longest fixations within a sliding window were selected as visual

units the framework’s performance was higher. This supports the intuitive notion that

participants would fixate longer on image regions that play an important role in achieving

the end goal. The default sliding window value of 5 seconds performs the best for the two

datasets and higher values do not result in any improvement. Both the visual-linguistic

ratio in our framework and the posterior decoding threshold in the Berkeley aligner have

a negative effect on the framework’s performance as they are increased. Results for effect

of parameters for the derm ii dataset are published in Vaidyanathan et al. (2015b).
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Figure 6.3: Annotations from top-left: The annotator, top-right: grid-based, bottom-left:
k -means, and bottom-right: MSFC alignments, respectively. Compared to the annotator’s
reference alignments, hypopigmentation and vermilion although incorrectly placed, are
still close to their corresponding regions with MSFC. In contrast macule with k -means is
quite far from where it should be.

6.3 DERM II

Our alignment method, irrespective of the fixation encoding technique, yields stronger

performance in comparison to the two baselines. In general, within our alignment method

both MSFC and k -means outperform the grid-based method. As indicated in Table 6.1,

MSFC achieves absolute improvement of 7%, 12%, and 10% for precision, recall and

AER, respectively, over the 1-second delay baseline. On the other hand, k -means when

compared to the 1-second delay baseline achieves 1%, 12%, and 5% absolute improvement

for precision, recall, and AER, respectively. The results hold on a per-image basis as well,

with the MSFC-based alignment approach yielding higher recall and lower AER than

baselines in 29 and 28 of the total 29 images, respectively, and higher precision than

baselines in 24 of the 29 images. The k -means linked alignment on the other hand yields

comparable precision for only 17 of the 29 images.

Figure 6.3 shows an image overlaid with the most frequently used linguistic units with

which those regions were aligned by our framework using the three methods. We compare it
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to the image when labeled by the annotator (expert dermatologist) in Figure 6.3 (top-left).

The labels are generally accurate and well located on the image in the k -means and MSFC

cases when compared to the manually annotated image. The grid-based method performs

poorly with only one correct label-region association. Labels such as hypopigmentation,

although incorrect, are still close to the corresponding region in the case of MSFC for this

image.

Considering our metrics the MSFC method outperforms the grid-based method in all

cases and k -means in many cases. While both MSFC and k -means use fixations as pointers

when identifying sequences of visual units from the determined image regions, the major

difference is that MSFC identifies the regions by clustering users’ fixations based on spatial

coordinates without using image features whereas k -means identifies the image regions

based on image features without using fixations. Even though k -means in comparison to

MSFC uses image features in addition to fixations, it does not use the fixations during the

segmentation process. The performance when considering MSFC suggests that we need to

include perceptual information to capture the semantics of images from users’ perspectives

for the process of identifying image regions.

We organized our images into four different groups following Li et al. (2013): single

lesion, multiple lesions, bilateral lesions, and distributed lesions (Figure 6.4). The category

multiple lesions had twice as many images as the other categories. Few images in our

database posed ambiguity regarding which category they belonged to. The k -means results

in 4 segments for each image while MSFC yielded on average 9, 9, 6, and 8 clusters for

the above categories, respectively. Interestingly, our results indicate that for most of the

single, bilateral, and distributed lesions cases MSFC with bitext alignment performs better

than k -means. However, annotations for images with multiple lesions are mostly improved

when using k -means with bitext alignment. Figure 6.4 shows some annotations achieved

for different cases using MSFC (black) and k -means (red).

Both MSFC and k -means in Figure 6.4 do well for the single lesion image (top-left) but

in the multiple lesion image, MSFC does worse than k -means (bottom-right). In this case,

MSFC is able to annotate one particular region as pustule but k -means, on the other hand,

is able to identify all regions associated with pustule. When the lesion size gets larger,

the k -means method either fails to annotate all of the regions, as in the bilateral case

(bottom-left) or annotates the incorrect ones, as in the distributed lesion case (top-right).

A visual inspection of the k -means segmented images indicates that, in some cases, color

features alone are insufficient and that texture might be playing an important role as
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Figure 6.4: Annotation examples for four different kinds of images with MSFC (black) and
k -means (red) used to obtain visual units. Top-left: Single lesion case where both MSFC
and k -means are comparable with the reference alignment. Top-right: Distributed lesion
case where MSFC correctly identifies hypopigmentation. Bottom-left: Bilateral lesions
where MSFC correctly annotates both parts of the lesion whereas k -means fails to annotate
one part. Bottom-right: Multiple lesions case where k -means correctly labels all the
regions pertaining to pustules and MSFC labels only one. This shows the advantage and
disadvantage of using each method.

well, as shown in Figure 6.4 top-right where color is not as strong a feature as texture for

differentiating the lesion.

The lower performance of MSFC on images with multiple lesions could be due to the

fact that fixations are single image coordinates and sometimes can lie just outside of the

tiny multiple lesions, even though the observer might have been paying attention to the

lesion itself. This could be solved by considering a region around the fixation approximating

the fovea. Also, some of the images with distributed lesions have values very close to the

skin in the Lab space. This may lead to a poor k -means segmentation output thereby

resulting in lower performance of the framework when compared to the MSFC method.

Further investigation reveals that even though MSFC’s performance for multiple lesion

cases is lower than that of k -means, the best improvement (15% in AER) that our

framework achieves over the 1-second delay baseline is for these images with multiple

lesions. The best improvement (10% in AER) over the 1-second delay baseline for the
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Figure 6.5: Correct (green) and incorrect (orange) labels identified by MSFC. Many labels
are correctly aligned even in challenging cases. Top-left: Whereas tiny pustules (on the
second toe) are incorrectly identified papule and toenail are satisfactory. Top-right: The
system correctly identifies the labels patches and bulla but does not recognize the tiny
collection of shiny vesicles underneath the arm. Bottom-left: Body part shoulder although
incorrectly annotated is still identified as a part of the arm. Bottom-right: While the single
lesion nodule is correctly identified the many scattered papule are incorrectly annotated.

k -means method is for images with single lesions.

Figure 6.5 shows more annotation examples from our database using the MSFC

method. It correctly identifies single lesions bulla, nodule, patches in the top-right and

bottom-right panels but misses multiple small papules in the bottom-right. The top-left

example is an interesting case where MSFC identifies the label papule, probably because

the papules form one long lesion, as opposed to bottom-right where they are scattered.

This is confirmed with the observation that MSFC fails to identify pustules in top-left

since they are scattered (on the second toe).

We also analyzed the performance of the framework for certain concept labels across

images. In dermatology the main lesion present in an image is called the primary

morphology. Across the 29 images, 9 primary morphologies were represented: plaque,

papule, nodule, patch, pustule, bulla, macule, vesicle and hypopigmentation with plaques

being most frequent and hypopigmentation being the least frequent. Each of these primary
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morphologies was either present independently or in groups with others. For each label,

we calculated precision for each of these labels across all of the images for the MSFC and

k -means method. Precision for MSFC in general tended to be higher than that for k -means,

particularly for papule and nodule (0.9). Precision for the rest of the labels ranged from

0.65 to 0.82 for MSFC. An in-depth analysis shows that even though k -means correctly

aligned many of these 9 labels, it also aligned them with many non-relevant regions thereby

lowering the precision. Using the k -means method, pustule and vesicle scored slightly

better (0.75) than using MSFC.

Therefore, it can be summarized that key labels such as papule and nodule had high

precision for MSFC whereas pustule and vesicle had high precision for k -means. This

indirectly confirms the observation that MSFC performed well on single lesion images since

most of the single lesion images had large papule or nodule as opposed to groups of tiny

pustules or vesicles, in which case k -means tends to perform better. The in-depth analysis

of primary morphology labels across images is useful in identifying their characteristics

across images. We could potentially extract all the regions from all the images pertaining

to each of these labels, extract image features and learn both common and idiosyncratic

features for each label.

For both MSFC and k -means there is substantial improvement in the recall values

over baselines when using bitext alignment across all evaluated image cases. We note that

precision is often lower due to linguistic units (little) that are not physically present in the

image. Additionally there are some linguistic units that correspond to the entire image

rather than a specific region (e.g. face as shown in Figure 6.3). Such holistic or abstract

units are not included in the manually derived reference alignments, resulting in lower

alignment precision for these images. In the future, we will incorporate methods to filter

such abstract words. These results are published in Vaidyanathan et al., (2015a, 2016).

6.4 SNAG

Using equations stated in Section 6.1, we calculated the average precision, recall, and

AER for alignments in the snag dataset and compared them against the baselines. The

comparison was done for the three clustering or segmentation methods mean shift fixation

clustering (MSFC), modified k -means with RGB color features and k equal to the number

of fixation clusters obtained by MSFC for each image, and gradient segmentation (GSEG).

The simultaneous baseline’s performance measures are similar to the 1-second delay
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MSFC modified k -means GSEG

Precision Recall AER Precision Recall AER Precision Recall AER

Simultaneous 0.42 0.30 0.65 0.49 0.17 0.74 0.41 0.14 0.78

1-second delay 0.43 0.31 0.64 0.50 0.17 0.74 0.42 0.15 0.78

Alignment framework 0.43 0.50 0.54 0.56 0.31 0.60 0.48 0.28 0.65

% improvement (over 1-second delay) 0 19 10 6 14 14 6 13 13

Table 6.2: Average alignment performance across images in the snag dataset, for three
different clustering or segmentation methods. Our framework with the MSFC clustering
method provides the best recall and lowest AER. However, modified k -means provides
the best precision. The absolute improvement achieved by the different clustering or
segmentation methods over the 1-second delay baseline are shown in the last row.

MSFC Modified k -means GSEG

Precision 62 96 96

Recall 100 100 100

AER 99 100 100

Table 6.3: Number of images for which our alignment framework provides an improvement
over the baselines, for each case of clustering or segmentation method. All three methods
provide improvement over the baselines for both recall and AER on all images with
modified k -means and GSEG providing improvement in precision as well. The total number
of images used in the dataset was 100.

baseline for snag dataset as well. As shown in Table 6.2 the proposed framework for

alignment performs better than either of the baselines. Among the three clustering or

segmentation methods, MSFC yields the highest recall and lowest AER. It achieves an

absolute improvement of 0%, 19%, and 10% for precision, recall and AER, respectively,

over the 1-second delay baseline. The absolute improvement percentages are shown in the

last row of Table 6.2. Modified k -means, on the other hand, results in higher precision

with an absolute improvement of 6%, 14%, and 14% over the 1-second delay baseline for

precision, recall, and AER, respectively. In comparison to MSFC and modified k -means,

the performance of GSEG is comparable with an absolute improvement of 6%, 13%, and

13% for precision, recall, and AER, respectively. Table 6.3 shows performance for each

clustering or segmentation method based on the number of images. While all three methods

yield higher recall and lower AER than baseline for almost all 100 images, modified

k -means and GSEG yield higher improvement in precision for 96 images outperforming

MSFC.

Visual comparison of reference alignments provided by the annotator with the

alignments obtained through our framework for the three clustering or segmentation



www.manaraa.com

6. RESULTS AND DISCUSSION 70

Figure 6.6: Top-left: Reference alignments as provided by the annotator. Alignment output
when using: Top-right: MSFC, Bottom-left: modified k -means, and Bottom-right: GSEG
methods, respectively. Correct alignments are shown in pink whereas misalignments as
well as labels not belonging to reference alignments are shown in yellow. Both modified
k -means and GSEG align all instances of labels such as plates with the incorrect regions
whereas MSFC aligns one instance of the label correctly. The visualization tool places the
label within the corresponding segment, however, in cases where the segments are small
the labels may appear to belong to the adjacent segments too (e.g. plates in bottom-right.

methods shows (Figure 6.6) most of the words are correctly aligned (pink) by all three

methods. MSFC correctly aligns labels present in the sure reference alignments such as

cake and plates, yielding a higher recall. It also aligns some of these labels such as plates

to regions they do not belong to explaining the low precision values. On the contrary, both

modified k -means and GSEG misalign labels such as plates leading to a lower precision.

Also, all three methods align labels such as camera, which cannot be grounded to any

region in the shown image. Such abstract labels that are not present in either sure or

possible reference alignments lower the precision values.

The improvement over the baselines supports that it would be naive to assume

simultaneous or fixed-delay correspondence between utterances and eye movement, and

underscores the promise of our alignment-annotation approach. This is true regardless of

the method used for the identification of visual units or the type of image. As highlighted

in Section 6.3, these results indicate that the alignment-annotation framework could in the
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Figure 6.7: Example images from category top-left: O=1, with one primary object (lady).
Top-right: O=2, two primary objects (girl, bear). Bottom-left: O=3, three primary objects
(gentleman, army officer, scissors). Bottom-right: O≥4, four or more primary objects
(person 1, person 2, person 3, person 4, cooler etc), respectively. Labels in pink indicate
all the three methods correctly aligned them. Incorrect alignments are shown in black
(MSFC), red (modified k -means), and blue (GSEG). The number of misalignments
increases as the images get more cluttered.

future consist of a clustering or segmentation method that uses both fixations and image

features during the segmentation process. This is expected to help in reducing the chances

of image regions, for example in k -means, representing different concept labels (linguistic

units) corresponding to the same region label (visual unit).

We divided the images in the snag dataset into four categories ranging from simple

to complex, as shown in Figure 6.7. Category O=1 consisted of images with one primary

object to gaze at and describe. For instance, image on top-left of Figure 6.7 consists of

one prominent object lady. Although there are other objects in the image to look at and

describe since there is only one prominent object the annotator categorized this image in

O=1 category. Likewise, category O=2 and O=3 consisted of approximately two and three

primary objects to gaze at and describe. Category O≥4 represents images with more than

3 primary objects. There were 16, 37, 12, and 35 images in each category, respectively. The

MSFC yielded on average 11, 10, 11, and 11 clusters for the four categories, respectively.
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Precision Recall AER

MSFC
modified
k -means

GSEG MSFC
modified
k -means

GSEG MSFC
modified
k -means

GSEG

O=1 (16) 0.43 0.57 0.47 0.55 0.31 0.3 0.53 0.59 0.63

O=2 (37) 0.47 0.59 0.51 0.55 0.32 0.29 0.51 0.58 0.63

O=3 (12) 0.44 0.55 0.48 0.44 0.28 0.25 0.56 0.62 0.67

O≥4 (35) 0.38 0.51 0.44 0.47 0.29 0.27 0.59 0.63 0.66

Table 6.4: Comparison of alignment performance for four different categories of images for
different clustering or segmentation methods. These four categories are defined based on
the approximate number of primary objects in the image, for example O=1 indicates the
images in this category had one primary object to gaze at and describe. Not surprisingly,
as the number of primary objects increase, the alignment performance decreases. Also,
regardless of the category of image, modified k -means provides the best precision whereas
MSFC provides best recall and AER.

Modified k -means resulted in the same number of segments for each category since it uses

the number of clusters provided by MSFC. As indicated in Table 6.4, the categorization

does not have much of an effect on the general trend of performance of the clustering

or segmentation methods. MSFC claims higher recall and low AER values while modified

k -means claims high precision values. However, the best performance is obtained for images

in category O=2 followed by category O=1. This suggests that the number of objects in

an image may affect the aligner’s performance. An important point to note is that the

above categorization is coarse and may involve subjectivity as it was performed by one

annotator, the primary researcher in this case. Further work is required to explore a more

defined method of dividing the images based on number of objects and using more than

one annotator to reduce any subjectivity.

Figure 6.7 shows the obtained alignments overlaid on their respective images

for the four categories. In general, labels are aligned correctly, but we also get

additional misalignments, regardless of the clustering or segmentation method used. These

misalignments seem to increase in number as the complexity of an image (i.e. number of

objects) increases thereby lowering performance. MSFC seems to have less number of

spurious alignments compared to both modified k -means and GSEG, possibly because its

solely based on the fixation data.

As previously mentioned, MSFC has the advantage of being solely based on fixations

thereby reducing the errors introduced due to sharing of image features by various

objects. Sharing of image features can lead to common image segment-labels during the

segmentation process. For example, in GSEG (Figure 6.8, bottom-left), the man’s coat
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Figure 6.8: Output from top-left: MSFC, top-right: Modified k -means, where k is equal
to the number of clusters obtained from MSFC, bottom-left: GSEG, and bottom-right:
k -means, where k=4, respectively. Modified k -means and GSEG tend to oversegment
leading to multiple segment labels for a given word-label whereas k=4 may lead
to undersegmentation in other cases leading to one segment-label shared by various
word-labels. A semantic segmentation method built using gaze data and image features
may be the solution to this problem.

and part of the scissors have the same segment-label. This would lead the framework

to incorrectly learn that labels coat and scissors both belong to the same image region.

When comparing k -means with k=4 used in the derm ii dataset and modified k -means,

we can observe that k=4 leads to segments that certainly look much cleaner. This is also

supported by the quantitative results obtained with k = 4, with average precision = 0.56,

average recall = 0.46, and average AER = 0.49. Low value of k here is advantageous in

some cases, such as scissors, which is aligned to one segment label in k -means with k=4

as opposed to approximately three segment labels in modified k -means. For our purposes,

the image region corresponding to the word scissors need not be segmented into further

segments, since our participants do not mention parts or regions of the scissors. Similarly,

GSEG also tends to oversegment in many cases thereby leading to low values of AER. We

still face the problem where both coat and scissors, despite being different objects, belong

to the same segment. This leads to low AER measures. MSFC also faces the same issue in
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MSFC k -means

Precision Recall Precision Recall

derm ii 0.45 0.56 0.41 0.56

snag 0.43 0.50 0.56 0.46

Table 6.5: Comparison of precision and recall from the alignment framework for the two
datasets for MSFC and k -means with k=4. Precision is generally lower than recall except
for the case of k -means with the snag dataset.

cases where the algorithm clusters fixations falling on two unrelated regions of the image

into one cluster. These observations strongly suggest that our framework would benefit

from a segmentation technique that builds on both image features and gaze data.

Interestingly, recall values are higher for the derm ii dataset when compared to the

snag dataset. Recall values indicate the number of alignment pairs in the reference

alignments that are also obtained in the framework’s output alignments. One possible

reason for high recall values could be that as a result of task instructions derm ii dataset

has a precise and limited vocabulary. Due to the nature of the dermatology field, most

of the regions in the images usually correspond to exactly one label. For instance, the

primary lesion in the image in Figure 6.3 corresponds to the label macule and most of the

observers mentioned it. On the other hand, due to the general-domain nature of the images

in the snag dataset, many objects in the images correspond to various labels. For example,

for the woman in the image in Figure 6.6, observers mentioned the labels lady, girl, and

female. Thus labels that were not mentioned by majority of the observers will have low

probability of being associated with the corresponding image region leading to low recall

values. Also from Table 6.1 and Table 6.2 we learn that the best absolute improvement

over baseline is obtained for Recall for both datasets when compared to Precision and

AER.

As shown in Table 6.5 precision values are generally lower than recall values when

comparing the framework’s performance for MSFC and k -means with k=4 regardless of

the dataset. However, this is not true for the case of k -means with the snag dataset where

precision is higher than recall. Similarly for modified k -means and GSEG the precision is

higher than recall for the snag dataset. Further work is needed to investigate the reason

for this trend.

For the two datasets, we also investigated the effect of the number of clusters obtained

from mean shift fixation clustering on the framework’s performance. Table 6.6 shows the
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Precision Recall AER

derm ii 0.25 (0.29) 0.25 (0.19) -0.15 (0.43)

snag -0.29 (0.003) -0.29 (0.003) 0.43 (5× 10−6)

Table 6.6: Pearson’s correlation value (r) and the corresponding significance value (p)
between the performance metrics and the number of clusters obtained using MSFC for the
two datasets.

MSFC modified k -means GSEG

uncorrected corrected uncorrected corrected uncorrected corrected

Precision 0.5 0.69 0.6 0.83 0.51 0.71

Recall 0.53 0.55 0.33 0.36 0.28 0.3

AER 0.48 0.37 0.55 0.47 0.62 0.55

Table 6.7: Comparison of average alignment performance across 5 images in the
snag dataset for uncorrected vs. manually corrected narratives. There is substantial
improvement in both precision and AER for all the clustering or segmentation methods.
The MSFC still offers the best AER.

Pearson’s correlation coefficient between the number of clusters in the images and the

precision, recall, and AER values for the two datasets. Also shown are the corresponding

significance values. For the derm ii dataset the correlation between number of clusters and

performance metrics is not significant (p > 0.05) enough. However, for the snag dataset

all three metrics are highly correlated with the number of clusters obtained using MSFC.

The negative coefficient shows that as the number of clusters increases the performance

decreases. This may be due to the fact that less number of clusters mean fewer incorrect

output alignments. Further work is needed to investigate the cause of this correlation.

6.4.1 Manual correction vs. ASR only

We also applied our annotation-alignment framework to the manually corrected narratives

for 5 images (described in Chapter 4). Table 6.7 shows the performance of the framework

with the corrected and uncorrected narratives. For the snag data, narratives were on

average 60 words in length and on average needed correction of 3 words. There is significant

improvement in both precision and AER for all three clustering or segmentation methods

between the uncorrected and corrected narratives. Using automated transcription reduces

manual labor by a substantial amount, but the performance improvement suggests the

limitations of the automated transcription. Therefore, performance could be improved
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by using automated transcription followed by manual correction thereby reducing some

amount of manual labor. This would also be helpful in better training of the automated

transcription tool. Again, the precision for corrected narratives is higher than both

uncorrected narratives in the snag dataset as well as the derm ii dataset due to overlap

percentage of linguistic units with reference alignments. This indicates that we need

improved methods to filter out or otherwise handle words that cannot be grounded in

regions of the image.

6.5 Summary

The quantitative and qualitative analysis discussed in this chapter show the usability

of our alignment framework in achieving meaningful image region annotations from

multimodal data. The improvements in alignment accuracy over the baselines for both

datasets indicates that the success of the framework is not limited by the type of image

used. This is particularly important since it enables the framework to obtain annotations

for specific-domain images in a less expensive and laborious manner. Annotations for

specific-domain images need experts making it more expensive. Our framework can allow

collection of annotation without having an expert go through the laborious task of marking

image regions and annotating them by hand. For example, real-time gaze and speech

data could be collected while a dermatologist is diagnosing a patient, which can then be

processed for annotations.
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Future Work and Conclusions

This work described in detail a visual-linguistic alignment framework that can be used for

annotating image regions. We also reported on a collected visual-linguistic or multimodal

data resource with general-domain images, snag, valuable for the scientific community.

For the derm ii dataset, the individual performances of MSFC and k -means show that

they each have strengths that together could be of more value than when individually used.

One way to combine the two techniques is to identify the cluster type (multiple, single,

bilateral, distributed) of a dermatology image and select a method (MSFC, k -means, etc.)

that performs well on the identified cluster type. Likewise, it may also be useful to weigh

the output of certain methods for particular concept labels. Another way to combine

the strengths of individual methods is to develop a new segmentation algorithm that

would combine image features and gaze data during the segmentation process. Gaze data

where fixations are convolved with a Gaussian kernel to mimic natural perception may

also improve the performance. Additionally, image features such as spatial coordinates

and texture should also be included. Future work can involve a method where using

k -means with image features such as spatial coordinates, color, and texture, images will

be oversegmented into numerous superpixels. These superpixels can then be re-grouped

using gaze data resulting in image regions obtained using perceptually important image

features.

For the snag dataset, MSFC and k -means with k=4 show better performance than

modified k -means and GSEG due to oversegmentation. Therefore oversegmentation is an

important issue to keep in mind when the new segmentation approach is designed for the

framework. Reducing the oversegmentation problem in both modified k -means and GSEG

77
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would result in better performance of the framework. Apart from oversegmentation, images

with more number of objects begin to pose a challenge to the segmentation methods.

An advantage with the images in the snag dataset is that they are general-domain

images from the mscoco dataset. Several state-of-the-art segmentation methods including

deep learning methods have been shown to successfully perform on these images. We

can further investigate the performance with DeepMask, a deep learning method and

Convolutional Oriented Boundaries, a contour detection and hierarchical segmentation

approach [Maninis et al., 2017]. It would also be interesting for the deep learning methods

to use gaze data along with other features as input to the neural network.

Currently we focus on extracting mostly nouns and adjectives as linguistic units, which

consist of both units that can be grounded in an image and abstract units. We can use

abstract concept filtering [Kiela et al., 2014] to remove such abstract units that add to the

low values of precision, in the framework. Another method to remove linguistic units

that are not present in the image from the narratives is by weighing linguistic units

using their frequency or by the percent of participants that mention them. For example

in the case of dermatology, for a given image if a participant mentions the incorrect

label such as patch as opposed to macule, using frequency as a weighting factor the label

patch could be removed or treated differently than the label macule for that particular

image. In addition, our method for extracting the linguistic units relies on parsing output

using the Berkeley parser, which for the derm ii dataset could be improved by training

the parser on spoken language data from the biomedical domain. The existing system

could be improved further by incorporating knowledge about conceptual relations such as

meronymy, commonly known as part-whole relationships, in both the linguistic and visual

modalities. For example, in Figure 6.5 (top-left) the word foot corresponds to almost the

entire image and therefore most of the regions, whereas the word papule corresponds to

a particular image region. In this particular image case, a foot has-a-papule relation can

be seen. Considering this information could benefit the alignment and semantic alignment

procedure, for instance in terms of helping to better identify the visual units (including

the annotation of foregrounded elements in more narrowly identified image segments with

respect to annotation of their embedding larger image region). This would further improve

the accuracy of multimodal data alignment and semantic annotation of images.

The multimodal framework can also be used to understand valence-related image

content. Exploration of applying the framework to understand how humans react to images

of varying emotional content has already begun with an extended set of collaborators
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(i.e. Gangji et al. 2017). The obtained image region annotations are useful for a variety

of image-based applications. They can assist in image classification and retrieval where

it is important to not only have annotations of the image as a single artifact but also

have annotations for specific image regions. Captions and descriptions for an image can

be automatically generated using the output from the framework. We can also build

interactive application systems where a user could be guided through an image-based

task using real-time gaze and spoken data. This could be particularly useful, for example,

for training dermatology or radiology interns. As mentioned in the introduction, this

framework can assist in developing computer applications where when a user gazes at

a painting in a museum, the computer can highlight areas of the painting where an artist

looked at and provide more conceptual information about that area. Last but not the least,

all the individual steps in the framework are automated, which facilitates the translation

to industry level automation.

From our results it is evident that the proposed alignment framework performs better

than the simultaneous and delayed baselines for both the derm ii and snag datasets.

This shows that integration of multimodal data, specifically visual and linguistic data, is

possible using bitext alignment. The above conclusion is supported by both qualitative

and quantitative results. The resulting annotations confirm that bitext alignment as

employed by our alignment framework can be used to obtain image region annotation.

Additionally, the framework’s performance also confirms that naturally elicited spoken

narratives through the Master-Apprentice model (as opposed to written captions) are

valuable for image region annotation.

The qualitative and quantitative results obtained for both the derm ii and snag

datasets indicate the broad applicability of the multimodal bitext alignment image

region annotation framework. This framework does not depend on a specific type of

expertise or image type and it can be applied to expert-domain as well as general-domain

images. It should also be applicable to other expert domains than the one explored here

(dermatology).

Overall, for both datasets, the MSFC clustering method outperforms the other

segmentation methods. This indirectly validates the crucial role gaze data can play in an

image region annotation framework. Other image segmentation methods such as k -means

and GSEG provide comparable values of precision, suggesting that image features are also

necessary for modeling image region annotation. Thus, to build an image region annotation

framework that can assist in developing advanced image-based application systems we need
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to integrate multimodal data elicited from humans with inherent information present in

the image. The ability of different segmentation methods to handle different categories of

images suggests that an extended framework could benefit by including an ensemble of

distinct techniques to address the heterogeneity of images and conceptual regions across

images.

The framework’s performance on uncorrected narratives suggests that there is

potential in using automated speech-to-text transcription tools. However, the improved

performance of the alignment framework on manually corrected narratives when compared

to uncorrected narratives indicates that automated transcription followed by manual

correction may be preferential, at least at times until ASR methods have improved further.

For the two datasets, parameters such as the size of the time window used to expand the

parallel corpus did not have major effect on the framework’s performance. This probably

indicates that the alignment annotation framework relies predominantly on the input data

itself and is quite robust to parameters. However, size of the dataset, i.e. number of parallel

sentences, affects the values of AER. Using the concept of sliding window aids in lowering

the values of AER but significant reduction can be achieved by adding more observers.

The proposed alignment framework shows how we can adapt natural language

processing and computer vision methods to creatively integrate visual and linguistic

information. This work shows how such a multimodal integration could be used to achieve

unsupervised semantic annotations for images. Like most datasets involving multimodal

data elicitation from humans, our datasets are modest. Nevertheless, our results clarify our

method’s promise, and the quantitative metrics we apply and visualized results obtained

support our conclusions. With advanced technologies such as virtual reality glasses,

wearable eye-trackers, and smartglasses, collecting multimodal data could eventually

become straightforward and natural resulting in more data that the alignment-annotation

framework and image-based application system could benefit from. Our work is an

important contribution toward the highly challenging problem of fusing human-elicited

multimodal data sources, a problem that will become increasingly important as such data

become more common.



www.manaraa.com

8

List of Publications

(1) Haduong, N., Nester, D., Vaidyanathan, P., Prudhommeaux, E., Bailey, R., and

Alm, C. O. (2018). Multimodal alignment for affective content. In Proceedings of the

Workshop of Affective Content Analysis at AAAI, Forthcoming.

(2) Gangji, A., Walden, T., Vaidyanathan, P., Prudhommeaux, E., Bailey, R., and

Alm, C. O. (2017). Using co-captured face, gaze and verbal reactions to images of

varying emotional content for analysis and semantic alignment. In Proceedings of the

Human-Aware AI Workshop at AAAI, pages 621-627.

(3) Farnand, S., Vaidyanathan, P., and Pelz, J. B. (2016). Recurrence metrics for

assessing eye movements in perceptual experiments. Journal of Eye Movement

Research, 9(4).

(4) Vaidyanathan, P., Prudhommeaux, E., Alm, C. O., Pelz, J. B., and Haake, A.

R. (2016). Fusing eye movements and observer narratives for expert-driven image

region annotations. In Proceedings of the Symposium on Eye Tracking Research and

Applications, pages 27-34. ACM. (Best Paper Award)

(5) Vaidyanathan, P., Prudhommeaux, E., Alm, C. O., Pelz, J. B., and Haake, A.

R. (2015a) Alignment of eye movements and spoken language for semantic image

understanding. In Proceedings of the International Conference on Computational

Semantics, pages 76-82. ACL.

(6) Vaidyanathan, P., Prudhommeaux, E., Alm, C. O., and Pelz, J. B. (2015b).

Computational integration of human vision and natural language through bitext

81



www.manaraa.com

8. LIST OF PUBLICATIONS 82

alignment. In Proceedings of the Fourth Workshop on Vision and Language, pages

4-5. ACL.

(7) Vaidyanathan, P., Pelz, J. B., Alm, C. O., Shi, P., and Haake, A. R. (2014).

Recurrence quantification analysis reveals eye movement differences between experts

and novices. In Proceedings of the Symposium on Eye Tracking Research and

Applications, pages 303-306. ACM.

(8) Vaidyanathan, P., Pelz, J. B., Alm, C. O., Calvelli, C., Shi, P., and Haake, A.

R. (2013). Integration of eye movements and spoken description for medical image

understanding. In Holmqvist, K., Mulvey, F., and Johansson, R., editors, Book of

Abstracts of the 17th European Conference on Eye Movements, pages 40-41. EMRA.

(9) Wang, D., Vaidyanathan, P., Haake, A., and Pelz, J. (2012). Are eye trackers

always as accurate as we assume? In Annual Meeting of the Society for Computers in

Psychology.

(10) Vaidyanathan, P., Pelz, J. B., McCoy, W., Calvelli, C., Alm, C. O., Shi, P., and

Haake, A. R. (2012). Visualinguistic approach to medical image understanding. In

Proceedings of the American Medical Informatics Association Annual Symposium,

pages 3-4. AMIA.

(11) Vaidyanathan, P., Pelz, J. B., Li, R., Mulpuru, S., Wang, D., Shi, P., Calvelli, C., and

Haake, A. R. (2011). Using human experts’ gaze data to evaluate image processing

algorithms. In Proceedings of the IEEE Image, Video, and Multidimensional Signal

Processing Workshop, pages 129-134.

(12) Li, R., Vaidyanathan, P., Mulpuru, S., Pelz, J. B., Shi, P., Calvelli, C., and Haake,

A. R. (2010). Human-centric approaches to image understanding and retrieval. In

Proceedings of the IEEE Western New York Image Processing Workshop, pages 62-65.



www.manaraa.com

Bibliography

[Anderson et al., 2013] Anderson, N. C., Bischof, W. F., Laidlaw, K. E., Risko, E. F., and

Kingstone, A. (2013). Recurrence quantification analysis of eye movements. Behavior

Research Methods, 45:842–856.

[Badler, 1975] Badler, N. I. (1975). Temporal Scene Analysis: Conceptual Descriptions of

Object Movements. PhD thesis, University of Toronto, Toronto, Canada.

[Ballerini et al., 2009] Ballerini, L., Li, X., Fisher, R. B., and Rees, J. (2009). A

query-by-example content-based image retrieval system of non-melanoma skin lesions.

In Proceedings of the First MICCAI International Conference on Medical Content-Based

Retrieval for Clinical Decision Support, pages 31–38. ACM.

[Barnard et al., 2003] Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D. M.,

and Jordan, M. I. (2003). Matching words and pictures. The Journal of Machine

Learning Research, 3:1107–1135.

[Berg et al., 2004a] Berg, T. L., Berg, A. C., Edwards, J., and Forsyth, D. (2004a). Who’s

in the picture? Advances in Neural Information Processing Systems, 17:137–144.

[Berg et al., 2004b] Berg, T. L., Berg, A. C., Edwards, J., Maire, M., White, R., Teh,

Y. W., Learned-Miller, E. G., and Forsyth, D. A. (2004b). Names and faces in the news.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 848–854.

[Beyer and Holtzblatt, 1997] Beyer, H. and Holtzblatt, K. (1997). Contextual Design:

Defining Customer-Centered Systems. Elsevier.

[Boersma, 2002] Boersma, P. (2002). Praat, a system for doing phonetics by computer.

Glot International, 5(9/10):341–345.

83



www.manaraa.com

BIBLIOGRAPHY 84

[Borji, 2009] Borji, A. (2009). Interactive Learning of Task-Driven Visual Attention

Control. PhD thesis, Institute for Research in Fundamental Sciences (IPM), School

of Cognitive Sciences (SCS), Tehran, Iran.

[Bosman et al., 2010] Bosman, H., Petkov, N., and Jonkman, M. (2010). Comparison of

color representations for content-based image retrieval in dermatology. Skin Research

and Technology, 16(1):109–113.

[Brown et al., 1993] Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L.

(1993). The mathematics of statistical machine translation: Parameter estimation.

Computational Linguistics, 19(2):263–311.

[Bullard et al., 2014] Bullard, J., Alm, C. O., Yu, Q., Shi, P., and Haake, A. (2014).

Towards multimodal modeling of physicians’ diagnostic confidence and self-awareness

using medical narratives. In Proceedings of the International Conference on

Computational Linguistics, pages 1718–1727.

[Castelhano et al., 2009] Castelhano, M., Mack, M., and Henderson, J. (2009). Viewing

task influences eye movement control during active scene perception. Journal of Vision,

9(3):1–15.

[Chang and Hsu, 1992] Chang, S.-K. and Hsu, A. (1992). Image information systems:

Where do we go from here? IEEE Transactions on Knowledge and Data Engineering,

4(5):431–442.

[Clarke et al., 2013] Clarke, A. D., Coco, M. I., and Keller, F. (2013). The impact

of attentional, linguistic, and visual features during object naming. Frontiers in

Psychology, 4:927.

[Coco and Keller, 2012] Coco, M. I. and Keller, F. (2012). Scan patterns predict

sentence production in the cross-modal processing of visual scenes. Cognitive Science,

36(7):1204–1223.

[Cooper, 1974] Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken

language: A new methodology for the real-time investigation of speech perception,

memory, and language processing. Cognitive Psychology, 6(1):84–107.



www.manaraa.com

BIBLIOGRAPHY 85

[Dahan et al., 2001] Dahan, D., Magnuson, J. S., and Tanenhaus, M. K. (2001). Time

course of frequency effects in spoken-word recognition: Evidence from eye movements.

Cognitive Psychology, 42(4):317–367.

[Duchowski, 2017] Duchowski, A. (2017). Eye Tracking Methodology. Springer-Verlag

London.

[Duygulu et al., 2002] Duygulu, P., Barnard, K., de Freitas, J. F., and Forsyth, D. A.

(2002). Object recognition as machine translation: Learning a lexicon for a fixed image

vocabulary. In Proceedings of the European Conference on Computer Vision, pages

97–112.

[Fei-Fei and Perona, 2005] Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical

model for learning natural scene categories. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 524–531.

[Ferreira and Henderson, 2004] Ferreira, F. and Henderson, J. M. (2004). The Interface

of Language, Vision and Action: Eye Movements and the Visual World. Psychology

Press.

[Ferreira and Tanenhaus, 2007] Ferreira, F. and Tanenhaus, M. K. (2007). Introduction

to the special issue on language–vision interactions. Journal of Memory and Language,

57(4):455–459.

[Forsyth et al., 2009] Forsyth, D. A., Berg, T., Alm, C. O., Farhadi, A., Hockenmaier, J.,

Loeff, N., and Wang, G. (2009). Words and pictures: Categories, modifiers, depiction,

and iconography. In Object Categorization: Computer and Human Vision Perspectives,

pages 167–181. Cambridge University Press.

[Gabbett and Abernethy, 2013] Gabbett, T. J. and Abernethy, B. (2013). Expert–novice

differences in the anticipatory skill of rugby league players. Sport, Exercise, and

Performance Psychology, 2(2):138–155.

[Gangji et al., 2017] Gangji, A., Walden, T., Vaidyanathan, P., Prudhommeaux, E.,

Bailey, R., and Alm, C. O. (2017). Using co-captured face, gaze and verbal reactions to

images of varying emotional content for analysis and semantic alignment. In Proceedings

of the Human-Aware AI Workshop at AAAI, pages 621–627.



www.manaraa.com

BIBLIOGRAPHY 86

[Goldstone, 1998] Goldstone, R. (1998). Perceptual learning. Annual Review of

Psychology, 49(1):585–612.

[Green and Swets, 1966] Green, D. M. and Swets, J. A. (1966). Signal Detection Theory

and Psychophysics, volume 1. Wiley New York.

[Griffin, 2004] Griffin, Z. M. (2004). Why look? Reasons for eye movements related to

language production. In Henderson, J. M. and Ferreira, F., editors, The Interface of

Language, Vision, and Action: Eye Movements and the Visual World, pages 213–248.

Psychology Press.

[Griffin and Bock, 2000] Griffin, Z. M. and Bock, K. (2000). What the eyes say about

speaking. Psychological Science, 11(4):274–279.

[Guo et al., 2014a] Guo, X., Li, R., Alm, C., Yu, Q., Pelz, J., Shi, P., and Haake, A.

(2014a). Infusing perceptual expertise and domain knowledge into a human-centered

image retrieval system: A prototype application. In Proceedings of the Symposium on

Eye Tracking Research and Applications, pages 275–278. ACM.

[Guo et al., 2014b] Guo, X., Yu, Q., Alm, C. O., Calvelli, C., Pelz, J. B., Shi, P., and

Haake, A. R. (2014b). From spoken narratives to domain knowledge: Mining linguistic

data for medical image understanding. Artificial Intelligence in Medicine, 62(2):79–90.

[Heller, 1988] Heller, D. (1988). On the history of eye movement recording. In Luer,

G., Lass, U., and Hoffman, J. S., editors, Eye Movement Research: Physiological and

Psychological Aspects, pages 37–51. Toronto: CJ Hogrefe.

[Herzog and Wazinski, 1994] Herzog, G. and Wazinski, P. (1994). Visual translator:

Linking perceptions and natural language descriptions. Artificial Intelligence Review,

8(2-3):175–187.

[Hochberg et al., 2014a] Hochberg, L., Alm, C. O., Rantanen, E. M., DeLong, C. M., and

Haake, A. (2014a). Decision style in a clinical reasoning corpus. In Proceedings of the

BioNLP Workshop, pages 83–87. ACL.

[Hochberg et al., 2014b] Hochberg, L., Alm, C. O., Rantanen, E. M., Yu, Q., DeLong,

C. M., and Haake, A. (2014b). Towards automatic annotation of clinical decision-making

style. In Proceedings of the 8th Linguistic Annotation Workshop, pages 129–138. ACL.



www.manaraa.com

BIBLIOGRAPHY 87

[Hoffman and Fiore, 2007] Hoffman, R. and Fiore, S. (2007). Perceptual (re) learning: A

leverage point for human-centered computing. IEEE Intelligent Systems, 22(3):79–83.

[Holsanova, 2006] Holsanova, J. (2006). Dynamics of picture viewing and picture

description. Advances in Consciousness Research, 67:235–256.

[Holsanova, 2008] Holsanova, J. (2008). Discourse, Vision, and Cognition, volume 23.

John Benjamins Publishing Company.

[IBM, 2015] IBM (2015). IBM Watson Speech to Text. https://www.ibm.com/watson/

developercloud/speech-to-text.html. (Date last accessed 16-Aug-2016).

[Jaber and Saber, 2010] Jaber, M. I. and Saber, E. (2010). Probabilistic approach

for extracting regions of interest in digital images. Journal of Electronic Imaging,

19(2):023019–1–023019–13.

[Jain and Vailaya, 1996] Jain, A. K. and Vailaya, A. (1996). Image retrieval using color

and shape. Pattern Recognition, 29(8):1233–1244.

[Jamieson et al., 2006] Jamieson, M., Dickinson, S., Stevenson, S., and Wachsmuth, S.

(2006). Using language to drive the perceptual grouping of local image features. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2102–2109.

[Ji and Ploux, 2003] Ji, H. and Ploux, S. (2003). A mental lexicon organization model. In

Proceedings of the Joint International Conference on Cognitive Science, pages 240–245.

[Johnson et al., 2015] Johnson, J., Ballan, L., and Li, F.-F. (2015). Love thy neighbors:

Image annotation by exploiting image metadata. arXiv preprint arXiv:1508.07647.

[Just and Carpenter, 1976] Just, M. A. and Carpenter, P. A. (1976). Eye fixations and

cognitive processes. Cognitive Psychology, 8(4):441–480.

[Just and Carpenter, 1980] Just, M. A. and Carpenter, P. A. (1980). A theory of reading:

From eye fixations to comprehension. Psychological Review, 87:329–354.

[Kaiser and Trueswell, 2008] Kaiser, E. and Trueswell, J. C. (2008). Interpreting pronouns

and demonstratives in Finnish: Evidence for a form-specific approach to reference

resolution. Language and Cognitive Processes, 23(5):709–748.

https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/speech-to-text.html


www.manaraa.com

BIBLIOGRAPHY 88

[Karpathy and Fei-Fei, 2015] Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic

alignments for generating image descriptions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3128–3137.

[Kiela et al., 2014] Kiela, D., Hill, F., Korhonen, A., and Clark, S. (2014). Improving

multi-modal representations using image dispersion: Why less is sometimes more. In

Proceedings of Association of Computation Linguistics, pages 835–841.

[Kong et al., 2014] Kong, C., Lin, D., Bansal, M., Urtasun, R., and Fidler, S. (2014).

What are you talking about? Text-to-image coreference. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3558–3565.

[Krupinski, 2000] Krupinski, E. (2000). The importance of perception research in medical

imaging. Radiation Medicine, 18(6):329–334.

[Kumar et al., 2010] Kumar, M., Torr, P. H., and Zisserman, A. (2010). Objcut: Efficient

segmentation using top-down and bottom-up cues. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(3):530–545.

[Kuznetsova et al., 2013] Kuznetsova, P., Ordonez, V., Berg, A. C., Berg, T. L., and Choi,

Y. (2013). Generalizing image captions for image-text parallel corpus. In Proceedings

of Association of Computation Linguistics, pages 790–796.

[Leigh and Zee, 2015] Leigh, J. and Zee, D. (2015). The Neurology of Eye Movements.

Oxford University Press, Oxford.

[Li and Wang, 2003] Li, J. and Wang, J. Z. (2003). Automatic linguistic indexing of

pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(9):1075–1088.

[Li et al., 2009] Li, L.-J., Socher, R., and Fei-Fei, L. (2009). Towards total scene

understanding: Classification, annotation and segmentation in an automatic framework.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2036–2043.

[Li et al., 2012] Li, R., Pelz, J. B., Shi, P., Alm, C. O., and Haake, A. R. (2012). Learning

eye movement patterns for characterization of perceptual expertise. In Proceedings of

the Symposium on Eye Tracking Research and Applications, pages 393–396. ACM.



www.manaraa.com

BIBLIOGRAPHY 89

[Li et al., 2013] Li, R., Shi, P., and Haake, A. R. (2013). Image understanding from

experts’ eyes by modeling perceptual skill of diagnostic reasoning processes. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2187–2194.

[Li et al., 2016] Li, R., Shi, P., Pelz, J., Alm, C. O., and Haake, A. R. (2016). Modeling eye

movement patterns to characterize perceptual skill in image-based diagnostic reasoning

processes. Computer Vision and Image Understanding, 151:138–152.

[Li et al., 2010] Li, R., Vaidyanathan, P., Mulpuru, S., Pelz, J. B., Shi, P., Calvelli, C., and

Haake, A. R. (2010). Human-centric approaches to image understanding and retrieval.

In Proceedings of the IEEE Western New York Image Processing Workshop, pages

62–65.

[Li et al., 2015] Li, X., Uricchio, T., Ballan, L., Bertini, M., Snoek, C. G., and Del Bimbo,

A. (2015). Socializing the semantic gap: A comparative survey on image tag assignment,

refinement and retrieval. arXiv preprint arXiv:1503.08248.

[Liang et al., 2006] Liang, P., Taskar, B., and Klein, D. (2006). Alignment by agreement.

In Proceedings of the Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 104–111.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,

Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In

Proceedings of the European Conference on Computer Vision, pages 740–755.

[Lipps and Pelz, 2004] Lipps, M. and Pelz, J. B. (2004). Yarbus revisited: Task-dependent

oculomotor behavior. Journal of Vision, 4(8):115–115.

[Lloyd, 1982] Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions

on Information Theory, 28(2):129–137.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features.

In Proceedings of the IEEE International Conference on Computer Vision, pages

1150–1157.

[Malcolm and Henderson, 2010] Malcolm, G. L. and Henderson, J. M. (2010). Combining

top-down processes to guide eye movements during real-world scene search. Journal of

Vision, 10(2):4, 1–11.



www.manaraa.com

BIBLIOGRAPHY 90

[Maninis et al., 2017] Maninis, K., Pont-Tuset, J., Arbeláez, P., and Gool, L. V. (2017).
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